1
|
Lesko I, Sengmany S, Beltran R, Le Gall E, Léonel E. Transition Metal-Free Direct Electrochemical Carboxylation of Organic Halides Using a Sacrificial Magnesium Anode: Straightforward Synthesis of Carboxylic Acids. ChemistryOpen 2025:e202400426. [PMID: 39876650 DOI: 10.1002/open.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
The direct electrochemical carboxylation of aryl, benzyl and alkyl halides by CO2 is described using a magnesium anode and a nickel foam cathode in an undivided cell. The process employs a sacrificial anode and does not require the additional use of a transition metal catalyst or demanding conditions, as the reactions are carried out under galvanostatic mode, at -10 °C and with commercial DMF. Under these operationally simple conditions, an important range of carboxylic acids are affordable. Mechanistic investigation account for the in situ generation of a carbanionic species that is not a simple organomagnesium halide.
Collapse
Affiliation(s)
- Iryna Lesko
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Stéphane Sengmany
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | | | - Erwan Le Gall
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Eric Léonel
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| |
Collapse
|
2
|
Sarkar P, Dash S, Krause JA, Sinha S, Panetier JA, Jiang JJ. Ambient Electroreductive Carboxylation of Unactivated Alkyl Chlorides and Polyvinyl Chloride (PVC) Upgrading. CHEMSUSCHEM 2024; 17:e202400517. [PMID: 38890556 DOI: 10.1002/cssc.202400517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
Electrosynthesis of alkyl carboxylic acids upon activating stronger alkyl chlorides at low-energy cost is desired in producing carbon-rich feedstock. Carbon dioxide (CO2), a greenhouse gas, has been recognized as an ideal primary carbon source for those syntheses, and such events also mitigate the atmospheric CO2 level, which is already alarming. On the other hand, the promising upcycling of polyvinyl chloride to polyacrylate is a high energy-demanding carbon-chloride (C-Cl) bond activation process. Molecular catalysts that can efficiently perform such transformation under ambient reaction conditions are rarely known. Herein, we reveal a nickel (Ni)-pincer complex that catalyzes the electrochemical upgrading of polyvinyl chloride to polyacrylate in 95 % yield. The activities of such a Ni electrocatalyst bearing a redox-active ligand were also tested to convert diverse examples of unactivated alkyl chlorides to their corresponding carboxylic acid derivatives. Furthermore, electronic structure calculations revealed that CO2 binding occurs in a resting state to yield an η2-CO2 adduct and that the C-Cl bond activation step is the rate-determining transition state, which has an activation energy of 19.3 kcal/mol. A combination of electroanalytical methods, control experiments, and computational studies were also carried out to propose the mechanism of the electrochemical C-Cl activation process with the subsequent carboxylation step.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Sandeep Dash
- Department of Chemistry, State University of New York, Binghamton, NY 13902
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Soumalya Sinha
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Julien A Panetier
- Department of Chemistry, State University of New York, Binghamton, NY 13902
| | | |
Collapse
|
3
|
Zhang Y, Gao C, Ren H, Luo P, Wan Q, Zhou H, Chen B, Zhang X. Efficient Photosynthesis of Value-Added Chemicals by Electrocarboxylation of Bromobenzene with CO 2 Using a Solar Energy Conversion Device. Int J Mol Sci 2024; 25:10608. [PMID: 39408936 PMCID: PMC11476564 DOI: 10.3390/ijms251910608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Solar-driven CO2 conversion into high-value-added chemicals, powered by photovoltaics, is a promising technology for alleviating the global energy crisis and achieving carbon neutrality. However, most of these endeavors focus on CO2 electroreduction to small-molecule fuels such as CO and ethanol. In this paper, inspired by the photosynthesis of green plants and artificial photosynthesis for the electroreduction of CO2 into value-added fuel, CO2 artificial photosynthesis for the electrocarboxylation of bromobenzene (BB) with CO2 to generate the value-added carboxylation product methyl benzoate (MB) is demonstrated. Using two series-connected dye-sensitized photovoltaics and high-performance catalyst Ag electrodes, our artificial photosynthesis system achieves a 61.1% Faraday efficiency (FE) for carboxylation product MB and stability of the whole artificial photosynthesis for up to 4 h. In addition, this work provides a promising approach for the artificial photosynthesis of CO2 electrocarboxylation into high-value chemicals using renewable energy sources.
Collapse
Affiliation(s)
| | | | | | | | | | - Huawei Zhou
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (C.G.); (H.R.); (P.L.); (Q.W.); (X.Z.)
| | - Baoli Chen
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (C.G.); (H.R.); (P.L.); (Q.W.); (X.Z.)
| | | |
Collapse
|
4
|
Zhou L, Li L, Zhang S, Kuang XK, Zhou YY, Tang Y. Catalytic Regio- and Enantioselective Remote Hydrocarboxylation of Unactivated Alkenes with CO 2. J Am Chem Soc 2024; 146:18823-18830. [PMID: 38950377 DOI: 10.1021/jacs.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The catalytic regio- and enantioselective hydrocarboxylation of alkenes with carbon dioxide is a straightforward strategy to construct enantioenriched α-chiral carboxylic acids but remains a big challenge. Herein we report the first example of catalytic highly enantio- and site-selective remote hydrocarboxylation of a wide range of readily available unactivated alkenes with abundant and renewable CO2 under mild conditions enabled by the SaBOX/Ni catalyst. The key to this success is utilizing the chiral SaBOX ligand, which combines with nickel to simultaneously control both chain-walking and the enantioselectivity of carboxylation. This process directly furnishes a range of different alkyl-chain-substituted or benzo-fused α-chiral carboxylic acids bearing various functional groups in high yields and regio- and enantioselectivities. Furthermore, the synthetic utility of this methodology was demonstrated by the concise synthesis of the antiplatelet aggregation drug (R)-indobufen from commercial starting materials.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Liping Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Sudong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiao-Kang Kuang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - You-Yun Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yong Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
5
|
Hu Q, Wei B, Wang M, Liu M, Chen XW, Ran CK, Wang G, Chen Z, Li H, Song J, Yu DG, Guo C. Enantioselective Nickel-Electrocatalyzed Reductive Propargylic Carboxylation with CO 2. J Am Chem Soc 2024; 146:14864-14874. [PMID: 38754389 DOI: 10.1021/jacs.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The exploitation of carbon dioxide (CO2) as a sustainable, plentiful, and harmless C1 source for the catalytic synthesis of enantioenriched carboxylic acids has long been acknowledged as a pivotal task in synthetic chemistry. Herein, we present a current-driven nickel-catalyzed reductive carboxylation reaction with CO2 fixation, facilitating the formation of C(sp3)-C(sp2) bonds by circumventing the handling of moisture-sensitive organometallic reagents. This electroreductive protocol serves as a practical platform, paving the way for the synthesis of enantioenriched propargylic carboxylic acids (up to 98% enantiomeric excess) from racemic propargylic carbonates and CO2. The efficacy of this transformation is exemplified by its successful utilization in the asymmetric total synthesis of (S)-arundic acid, (R)-PIA, (S)-chizhine D, (S)-cochlearin G, and (S,S)-alexidine, thereby underscoring the potential of asymmetric electrosynthesis to achieve complex molecular architectures sustainably.
Collapse
Affiliation(s)
- Qingdong Hu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Boyuan Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Mingxu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Minghao Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gefei Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Haoze Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Davies J, Lyonnet JR, Carvalho B, Sahoo B, Day CS, Juliá-Hernández F, Duan Y, Álvaro Velasco-Rubio, Obst M, Norrby PO, Hopmann KH, Martin R. Kinetically-Controlled Ni-Catalyzed Direct Carboxylation of Unactivated Secondary Alkyl Bromides without Chain Walking. J Am Chem Soc 2024; 146:1753-1759. [PMID: 38193812 PMCID: PMC10824404 DOI: 10.1021/jacs.3c11205] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Herein, we report the direct carboxylation of unactivated secondary alkyl bromides enabled by the merger of photoredox and nickel catalysis, a previously inaccessible endeavor in the carboxylation arena. Site-selectivity is dictated by a kinetically controlled insertion of CO2 at the initial C(sp3)-Br site by the rapid formation of Ni(I)-alkyl species, thus avoiding undesired β-hydride elimination and chain-walking processes. Preliminary mechanistic experiments reveal the subtleties of stereoelectronic effects for guiding the reactivity and site-selectivity.
Collapse
Affiliation(s)
- Jacob Davies
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Julien R. Lyonnet
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- Universitat
Rovira i Virgili, Departament de Química
Orgànica, 43007 Tarragona, Spain
| | - Bjørn Carvalho
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9307 Tromsø, Norway
| | - Basudev Sahoo
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Craig S. Day
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- Universitat
Rovira i Virgili, Departament de Química
Orgànica, 43007 Tarragona, Spain
| | - Francisco Juliá-Hernández
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Yaya Duan
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Álvaro Velasco-Rubio
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Marc Obst
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9307 Tromsø, Norway
| | - Per-Ola Norrby
- Data
Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, SE-431 83 Mölndal, Sweden
| | - Kathrin H. Hopmann
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9307 Tromsø, Norway
| | - Ruben Martin
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Yan Y, Hao J, Xie F, Han F, Jing L, Han P. Magnesium-Mediated Umpolung Carboxylation of p-Quinone Methides with CO 2. J Org Chem 2023; 88:14640-14648. [PMID: 37773013 DOI: 10.1021/acs.joc.3c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Magnesium-mediated reductive carboxylation of p-QMs with CO2 via an Umpolung strategy has been developed, which can be used for the preparation of various aryl acetic acids. This protocol featured high atom economy, mild conditions, and operational simplicity. The creation of this Umpolung carboxylation of p-QMs will unprecedentedly extend the application of p-QMs to nucleophilic reagents.
Collapse
Affiliation(s)
- Yunying Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jianjun Hao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Fenfen Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
8
|
Jana S, Mayerhofer VJ, Teskey CJ. Photo- and Electrochemical Cobalt Catalysed Hydrogen Atom Transfer for the Hydrofunctionalisation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202304882. [PMID: 37184388 DOI: 10.1002/anie.202304882] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
Catalytic hydrogen atom transfer from metal-hydrides to alkenes allows feedstock olefins to be used as alkyl radical precursors. The chemoselectivity of this process makes it an attractive synthetic tool and as such it has been regularly used in synthesis of complex molecules. However, onwards reactivity is limited by compatibility with the conditions which form the key metal-hydride species. Now, through the merger with photocatalysis or electrochemistry, milder methods are emerging which can unlock entirely new reactivity and offer perspectives on expanding these methods in unprecedented directions. This review outlines the most recent developments in electro- and photochemical cobalt catalysed methods and offers suggestions on the future outlook.
Collapse
Affiliation(s)
- Samikshan Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Victor J Mayerhofer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christopher J Teskey
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
9
|
Gao S, Wang C, Yang J, Zhang J. Cobalt-catalyzed enantioselective intramolecular reductive cyclization via electrochemistry. Nat Commun 2023; 14:1301. [PMID: 36894526 PMCID: PMC9998880 DOI: 10.1038/s41467-023-36704-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Transition-metal catalyzed asymmetric cyclization of 1,6-enynes has emerged as a powerful method for the construction of carbocycles and heterocycles. However, very rare examples worked under electrochemical conditions. We report herein a Co-catalyzed enantioselective intramolecular reductive coupling of enynes via electrochemistry using H2O as hydride source. The products were obtained in good yields with high regio- and enantioselectivities. It represents the rare progress on the cobalt-catalyzed enantioselective transformation via electrochemistry with a general substrate scope. DFT studies explored the possible reaction pathways and revealed that the oxidative cyclization of enynes by LCo(I) is more favorable than oxidative addition of H2O or other pathways.
Collapse
Affiliation(s)
- Shiquan Gao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing, 312000, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China. .,Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
| |
Collapse
|
10
|
Wang L, Li T, Perveen S, Zhang S, Wang X, Ouyang Y, Li P. Nickel-Catalyzed Enantioconvergent Carboxylation Enabled by a Chiral 2,2'-Bipyridine Ligand. Angew Chem Int Ed Engl 2022; 61:e202213943. [PMID: 36300599 DOI: 10.1002/anie.202213943] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/24/2022]
Abstract
In contrast to previous approaches to chiral α-aryl carboxylic acids that based on reactions using hazardous gases, pressurized setup and mostly noble metal catalysts, in this work, a nickel-catalyzed general, efficient and highly enantioselective carboxylation reaction of racemic benzylic (pseudo)halides under mild conditions using atmospheric CO2 has been developed. A unique chiral 2,2'-bipyridine ligand named Me-SBpy featuring compact polycyclic skeleton enabled both high reactivity and stereoselectivity. The utility of this method has been demonstrated by synthesis of various chiral α-aryl carboxylic acids (30 examples, up to 95 % yield and 99 : 1 er), including profen family anti-inflammatory drugs and transformations using the acids as key intermediates. Based on mechanistic experimental results, a plausible catalytic cycle involving Ni-complex/radical equilibrium and Lewis acid-assisted CO2 activation has been proposed.
Collapse
Affiliation(s)
- Linghua Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Tao Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Saima Perveen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.,School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Liu D, Liu ZR, Wang ZH, Ma C, Herbert S, Schirok H, Mei TS. Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides. Nat Commun 2022; 13:7318. [PMID: 36443306 PMCID: PMC9705544 DOI: 10.1038/s41467-022-35073-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Electrochemical asymmetric catalysis has emerged as a sustainable and promising approach to the production of chiral compounds and the utilization of both the anode and cathode as working electrodes would provide a unique approach for organic synthesis. However, precise matching of the rate and electric potential of anodic oxidation and cathodic reduction make such idealized electrolysis difficult to achieve. Herein, asymmetric cross-coupling between α-chloroesters and aryl bromides is probed as a model reaction, wherein alkyl radicals are generated from the α-chloroesters through a sequential oxidative electron transfer process at the anode, while the nickel catalyst is reduced to a lower oxidation state at the cathode. Radical clock studies, cyclic voltammetry analysis, and electron paramagnetic resonance experiments support the synergistic involvement of anodic and cathodic redox events. This electrolytic method provides an alternative avenue for asymmetric catalysis that could find significant utility in organic synthesis.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Simon Herbert
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Hartmut Schirok
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China.
| |
Collapse
|
12
|
Wang S, Feng T, Wang Y, Qiu Y. Recent Advances in Electrocarboxylation with CO2. Chem Asian J 2022; 17:e202200543. [DOI: 10.1002/asia.202200543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Siyi Wang
- China University of Mining and Technology School of Chemical Engineering & Technology CHINA
| | - Tian Feng
- Nankai University College of Chemistry CHINA
| | - Yanwei Wang
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
13
|
Kaeffer N, Leitner W. Electrocatalysis with Molecular Transition-Metal Complexes for Reductive Organic Synthesis. JACS AU 2022; 2:1266-1289. [PMID: 35783173 PMCID: PMC9241009 DOI: 10.1021/jacsau.2c00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalysis enables the formation or cleavage of chemical bonds by a genuine use of electrons or holes from an electrical energy input. As such, electrocatalysis offers resource-economical alternative pathways that bypass sacrificial, waste-generating reagents often required in classical thermal redox reactions. In this Perspective, we showcase the exploitation of molecular electrocatalysts for electrosynthesis, in particular for reductive conversion of organic substrates. Selected case studies illustrate that efficient molecular electrocatalysts not only are appropriate redox shuttles but also embrace the features of organometallic catalysis to facilitate and control chemical steps. From these examples, guidelines are proposed for the design of molecular electrocatalysts suited to the reduction of organic substrates. We finally expose opportunities brought by catalyzed electrosynthesis to functionalize organic backbones, namely using sustainable building blocks.
Collapse
Affiliation(s)
- Nicolas Kaeffer
- Max Planck Institute for Chemical
Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical
Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Yang F, Nie YC, Liu HY, Zhang L, Mo F, Zhu R. Electrocatalytic Oxidative Hydrofunctionalization Reactions of Alkenes via Co(II/III/IV) Cycle. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi-Chen Nie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han-Yuan Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanyang Mo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Zhao YJ, Yang LR, Wang LT, Wang Y, Lu JX, Wang H. Asymmetric electrocarboxylation of 4′-methylacetophenone over PrCoO 3 perovskites. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00116k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Asymmetric electrocarboxylation of aromatic ketones has been achieved over PrCoO3 perovskites with the help of chiral auxiliary t-Bu(R,R)salen(Co[ii]) under CO2 atmosphere.
Collapse
Affiliation(s)
- Yi-Jun Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Li-Rong Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Le-Ting Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ying Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jia-Xing Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Huan Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
17
|
Tomczyk D, Bukowski W, Bester K, Kaczmarek M. Electrocatalytic Properties of Ni(II) Schiff Base Complex Polymer Films. MATERIALS (BASEL, SWITZERLAND) 2021; 15:191. [PMID: 35009337 PMCID: PMC8745840 DOI: 10.3390/ma15010191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
Platinum electrodes were modified with polymers of the (±)-trans-N,N'-bis(salicylidene)-1,2-cyclohexanediaminenickel(II) ([Ni(salcn)]) and (±)-trans-N,N'-bis(3,3'-tert-Bu-salicylidene)-1,2-cyclohexanediaminenickel(II) ([Ni(salcn(Bu))]) complexes to study their electrocatalytic and electroanalytical properties. Poly[Ni(salcn)] and poly[Ni(salcn(Bu))]) modified electrodes catalyze the oxidation of catechol, aspartic acid and NO2-. In the case of poly[Ni(salcn)] modified electrodes, the electrocatalysis process depends on the electroactive surface coverage. The films with low electroactive surface coverage are only a barrier in the path of the reducer to the electrode surface. The films with more electroactive surface coverage ensure both electrocatalysis inside the film and oxidation of the reducer directly on the electrode surface. In the films with the most electroactive surface coverage, electrocatalysis occurs only at the polymer-solution interface. The analysis was based on cyclic voltammetry, EQCM (electrochemical quartz crystal microbalance) and rotating disc electrode method.
Collapse
Affiliation(s)
- Danuta Tomczyk
- Department of Inorganic and Analytical Chemistry, University of Łódź, ul. Tamka 12, 91-403 Lodz, Poland;
| | - Wiktor Bukowski
- Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców W-wy 6, 35-959 Rzeszow, Poland; (W.B.); (K.B.)
| | - Karol Bester
- Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców W-wy 6, 35-959 Rzeszow, Poland; (W.B.); (K.B.)
| | - Michalina Kaczmarek
- Department of Inorganic and Analytical Chemistry, University of Łódź, ul. Tamka 12, 91-403 Lodz, Poland;
| |
Collapse
|
18
|
Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci Bull (Beijing) 2021; 66:2412-2429. [PMID: 36654127 DOI: 10.1016/j.scib.2021.07.011] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023]
Abstract
Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C-H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xu Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
19
|
Yang LR, Zhang JJ, Zhao YJ, Wang ZL, Wang H, Lu JX. La1−xSrxFeO3 perovskite electrocatalysts for asymmetric electrocarboxylation of acetophenone with CO2. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Wang H, Yue YN, Xiong R, Liu YT, Yang LR, Wang Y, Lu JX. Electrochemically Promoted Asymmetric Transfer Hydrogenation of 2,2,2-Trifluoroacetophenone. J Org Chem 2021; 86:16158-16161. [PMID: 34382404 DOI: 10.1021/acs.joc.1c01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study reported an electrochemically promoted asymmetric hydrogen transfer reaction of 2,2,2-trifluoroacetophenone with a chiral Ru complex. (R)-α-(Trifluoromethyl) benzyl alcohol with a 96% yield and 94% ee could be obtained with only a 0.5 F mol-1 charge amount at room temperature and normal pressure.
Collapse
Affiliation(s)
- Huan Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ying-Na Yue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Rui Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yu-Ting Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Li-Rong Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ying Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jia-Xing Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
21
|
Directing electrochemical asymmetric synthesis at heterogeneous interfaces: Past, present, and challenges. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Chakraborty P, Mandal R, Garg N, Sundararaju B. Recent advances in transition metal-catalyzed asymmetric electrocatalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Yang LR, Zhao YJ, Jiang CJ, Xiong R, Wang H, Lu JX. Perovskite La0.7Sr0.3Fe0.8B0.2O3 (B = Ti, Mn, Co, Ni, and Cu) as heterogeneous electrocatalysts for asymmetric electrocarboxylation of aromatic ketones. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 505] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
26
|
Abstract
Accompanied by a change in color from red to black, the enantiomorphic phases of the cobalt complexes of a chiral salen ligand (L2−, Co(L)·CS2, and Co(L) (L = LS,S or LR,R)) chemisorb NO (g) at atmospheric pressure and rt over hours for the CS2 solvated phase, and within seconds for the desolvated phase. NO is installed as an axial nitrosyl ligand. Aligned but unconnected voids in the CS2 desorbed Co(LR,R)·CS2 structure indicate conduits for the directional desorption of CS2 and reversible sorption of NO, which occur without loss of crystallinity. Vibrational circular dichroism (VCD) spectra have been recorded for both hands of LH2, Zn(L), Co(L)·CS2, Co(L), Co(NO)(L), and Co(NO)(L)·CS2, revealing significant differences between the solution-state and solid-state spectra. Chiral induction enables the detection of the νNO band in both condensed states, and surprisingly also the achiral lattice solvent (CS2 (νCS at 1514 cm−1)) in the solid-state VCD. Solution-state spectra of the paramagnetic Co(II) complex shows a nearly 10-fold enhancement and more extensive inversion of polarity of the vibrations of dominant VCD bands compared to the spectra of the diamagnetic compounds. This enhancement is less pronounced when there are fewer polarity inversions in the solid state VCD spectra.
Collapse
|
27
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
28
|
Zhong J, Yu Y, Zhang D, Ye K. Merging cobalt catalysis and electrochemistry in organic synthesis. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Tang T, Sandford C, Minteer SD, Sigman MS. Analyzing mechanisms in Co(i) redox catalysis using a pattern recognition platform. Chem Sci 2021; 12:4771-4778. [PMID: 34168755 PMCID: PMC8179645 DOI: 10.1039/d0sc06725c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. The appropriate choice of redox mediator can avoid electrode passivation and overpotential, which strongly inhibit the efficient activation of substrates in electrolysis. Despite the benefits brought by redox catalysis, establishing the precise nature of substrate activation remains challenging. Herein, we determine that a Co(i) complex bearing two N,N,N-tridentate ligands acts as a competent redox catalyst for the reduction of benzyl bromide substrates. Kinetic studies combining electroanalytical techniques with multivariable linear-regression analysis were conducted, disclosing an outer-sphere electron-transfer mechanism, which occurs in concert with C-Br bond cleavage. Furthermore, we apply a pattern recognition platform to distinguish between mechanisms in the activation of benzyl bromides, found to be dependent on the ligation state of the cobalt(i) center and ligand used.
Collapse
Affiliation(s)
- Tianhua Tang
- Department of Chemistry, University of Utah 315 South 1400 East Salt Lake City Utah 84112 USA
| | - Christopher Sandford
- Department of Chemistry, University of Utah 315 South 1400 East Salt Lake City Utah 84112 USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah 315 South 1400 East Salt Lake City Utah 84112 USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah 315 South 1400 East Salt Lake City Utah 84112 USA
| |
Collapse
|
30
|
Yang Z, Yu Y, Lai L, Zhou L, Ye K, Chen FE. Carbon dioxide cycle via electrocatalysis: Electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
31
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
32
|
Li H, Xue YF, Ge Q, Liu M, Cong H, Tao Z. Chiral electroorganic chemistry: An interdisciplinary research across electrocatalysis and asymmetric synthesis. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Wu LX, Deng FJ, Wu L, Wang H, Chen TJ, Guan YB, Lu JX. Nickel-catalyzed electrocarboxylation of allylic halides with CO 2. NEW J CHEM 2021. [DOI: 10.1039/d1nj02006d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel catalysts were synthesized and used for regioselective electrocarboxylation of allylic halides and atmospheric CO2. β,γ-Unsaturated carboxylic acids were obtained with moderate to good yield and good functional group tolerance.
Collapse
Affiliation(s)
- La-Xia Wu
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Fang-Jie Deng
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Lin Wu
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Huan Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Tai-jie Chen
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Ye-Bin Guan
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Jia-Xing Lu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
34
|
Wang N, Xu J, Mei H, Moriwaki H, Izawa K, Soloshonok VA, Han J. Electrochemical Approaches for Preparation of Tailor-Made Amino Acids. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Shan SL, Jiang CJ, Liu YT, Zhang JJ, Wang H, Lu JX. Electrocatalytic carboxylation of halogenated compounds with mesoporous silver electrode materials. RSC Adv 2021; 11:21986-21990. [PMID: 35480784 PMCID: PMC9034108 DOI: 10.1039/d1ra02563e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/06/2021] [Indexed: 12/01/2022] Open
Abstract
Mesoporous silver materials are used as electrocatalysts for halogenated compounds. The mesoporous silver materials have uniform mesoporous size (8 nm), large specific surface area (12 m2 g−1), high pore volume (0.07 cm3 g−1), and a good 3D network structure of the metallic silver skeleton. The results show that the prepared materials exhibit high performance in electrocatalytic carboxylation of halogenated compounds to acid (78%). Mesoporous silver materials are used as electrocatalysts for halogenated compounds and exhibit high performance in electrocatalytic carboxylation of halogenated compounds to carboxylic acid (78%).![]()
Collapse
Affiliation(s)
- Si-Li Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Cheng-Jie Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Yu-Ting Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Jing-Jie Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Huan Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Jia-Xing Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| |
Collapse
|
36
|
Shukla A, Prem Kumar T. Electrochemistry: Retrospect and Prospects. Isr J Chem 2020. [DOI: 10.1002/ijch.202000064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ashok Shukla
- Solid State & Structural Chemistry Unit Indian Institute of Science Bangalore 560012 Karnataka India
| | - T. Prem Kumar
- Retired from Electrochemical Power Systems Division Central Electrochemical Research Institute Karaikudi 630003 Tamil Nadu India
| |
Collapse
|
37
|
Abstract
The renewed interest in electrosynthesis demonstrated by organic chemists in the last years has allowed for rapid development of new methodologies. In this review, advances in enantioselective electrosynthesis that rely on catalytic amounts of organic or metal-based chiral mediators are highlighted with focus on the most recent developments up to July 2020. Examples of C-H functionalization, alkene functionalization, carboxylation and cross-electrophile couplings are discussed, along with their related mechanistic aspects.
Collapse
|
38
|
|
39
|
Affiliation(s)
- Xihao Chang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Qinglin Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| |
Collapse
|
40
|
Chang X, Zhang Q, Guo C. Asymmetric Electrochemical Transformations. Angew Chem Int Ed Engl 2020; 59:12612-12622. [DOI: 10.1002/anie.202000016] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Xihao Chang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Qinglin Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| |
Collapse
|
41
|
Shi Y, Pan BW, Zhou Y, Zhou J, Liu YL, Zhou F. Catalytic enantioselective synthesis using carbon dioxide as a C1 synthon. Org Biomol Chem 2020; 18:8597-8619. [DOI: 10.1039/d0ob01905d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes the advances in catalytic enantioselective reactions using CO2 as a C1 synthon, introduces strategies and discusses advantages and limitations, highlights the application, and outlines the synthetic opportunities.
Collapse
Affiliation(s)
- Yang Shi
- College of Pharmacy
- Guizhou University of Traditional Chinese Medicine
- Guiyang
- 550025
- P. R. China
| | - Bo-Wen Pan
- College of Pharmacy
- Guizhou University of Traditional Chinese Medicine
- Guiyang
- 550025
- P. R. China
| | - Ying Zhou
- College of Pharmacy
- Guizhou University of Traditional Chinese Medicine
- Guiyang
- 550025
- P. R. China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai
- 200062
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- 510006
- P. R. China
| | - Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai
- 200062
| |
Collapse
|
42
|
Ghosh M, Shinde VS, Rueping M. A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions. Beilstein J Org Chem 2019; 15:2710-2746. [PMID: 31807206 PMCID: PMC6880813 DOI: 10.3762/bjoc.15.264] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/17/2019] [Indexed: 01/07/2023] Open
Abstract
The direct exploitation of ‘electrons’ as reagents in synthetic organic transformations is on the verge of a renaissance by virtue of its greenness, sustainability, atom economy, step economy and inherent safety. Achieving stereocontrol in such organic electrochemical reactions remains a major synthetic challenge and hence demands great expertise. This review provides a comprehensive discussion of the details of stereoselective organic electrochemical reactions along with the synthetic accomplishments achieved with these methods.
Collapse
Affiliation(s)
- Munmun Ghosh
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Valmik S Shinde
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
43
|
Li H, Zhang Y, Liu D, Liu X. An improved method for the synthesis of phenylacetic acid derivatives via carbonylation. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819876202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
2,4-Dichlorophenylacetic acid is synthesized in high yield via the carbonylation of 2,4-dichlorobenzyl chloride, and various experimental conditions are evaluated. Xylene, bistriphenylphosphine palladium dichloride, tetraethylammonium chloride and sodium hydroxide in solution are added to the reaction system and held at 80 °C under a CO atmosphere. 2,4-Dichlorophenylacetic acid is obtained in a maximum yield of 95%, and a mechanism for 2,4-dichlorobenzyl chloride carbonylation is proposed. The reaction system provides a mild, effective and novel means by which to prepare phenylacetic acid derivatives from their corresponding benzyl chloride derivatives.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Yijun Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Dinghua Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaoqin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
44
|
Berijani K, Morsali A. Dual activity of durable chiral hydroxyl-rich MOF for asymmetric catalytic reactions. J Catal 2019. [DOI: 10.1016/j.jcat.2019.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Strehl J, Hilt G. Electrochemical, Manganese-Assisted Carbon-Carbon Bond Formation between β-Keto Esters and Silyl Enol Ethers. Org Lett 2019; 21:5259-5263. [PMID: 31247778 DOI: 10.1021/acs.orglett.9b01866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical carbon-carbon bond formation process between β-keto esters and silyl enol ethers was investigated utilizing manganese salts. The tricarbonyl compounds were generated in moderate to good yields under neutral conditions. Control experiments revealed that an electro-generated base at the cathode is important. Electroanalytical measurements with a Mn(TPA) complex suggested that the oxidation of the silyl enol ether is the first step in the oxidation process initiated by a corresponding Mn(IV) species.
Collapse
Affiliation(s)
- Julia Strehl
- Institut für Chemie , Universität Oldenburg , Carl-von-Ossietzky-Str. 9-11 , D-26111 Oldenburg , Germany
| | - Gerhard Hilt
- Institut für Chemie , Universität Oldenburg , Carl-von-Ossietzky-Str. 9-11 , D-26111 Oldenburg , Germany
| |
Collapse
|
46
|
Abstract
Chiral salen-metal complexes are among the most versatile asymmetric catalysts and have found utility in fields ranging from materials chemistry to organic synthesis. These complexes are capable of inducing chirality in products formed from a wide variety of chemical processes, often with close to perfect stereoinduction. Salen ligands are tunable for steric as well as electronic properties, and their ability to coordinate a large number of metals gives the derived chiral salen-metal complex very broad utility in asymmetric catalysis. This review primarily summarizes developments in chiral salen-metal catalysis over the last two decades with particular emphasis on those applications of importance in asymmetric synthesis.
Collapse
Affiliation(s)
- Subrata Shaw
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , 415 Main Street , Cambridge , Massachusetts 02142 , United States
| | - James D White
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
47
|
Lin Q, Li L, Luo S. Asymmetric Electrochemical Catalysis. Chemistry 2019; 25:10033-10044. [DOI: 10.1002/chem.201901284] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/24/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Qifeng Lin
- Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Longji Li
- Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Sanzhong Luo
- Center of Basic Molecular ScienceDepartment of ChemistryTsinghua University Beijing 100084 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300071 China
| |
Collapse
|
48
|
Zhang Q, Chang X, Peng L, Guo C. Asymmetric Lewis Acid Catalyzed Electrochemical Alkylation. Angew Chem Int Ed Engl 2019; 58:6999-7003. [DOI: 10.1002/anie.201901801] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/20/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Qinglin Zhang
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Xihao Chang
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Lingzi Peng
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| |
Collapse
|
49
|
Zhang Q, Chang X, Peng L, Guo C. Asymmetric Lewis Acid Catalyzed Electrochemical Alkylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901801] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qinglin Zhang
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Xihao Chang
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Lingzi Peng
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| |
Collapse
|
50
|
Wu LX, Zhao YG, Guan YB, Wang H, Lan YC, Wang H, Lu JX. Silver encapsulated copper salen complex: efficient catalyst for electrocarboxylation of cinnamyl chloride with CO2. RSC Adv 2019; 9:32628-32633. [PMID: 35529726 PMCID: PMC9073196 DOI: 10.1039/c9ra05253d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/26/2019] [Indexed: 11/24/2022] Open
Abstract
An active catalyst, [Cu]@Ag composite, was synthesized for the first time and used as a cathode for electrocarboxylation of cinnamyl chloride with CO2. β,γ-Unsaturated carboxylic acids were obtained with excellent yield and moderate selectivity. Moreover, reasonable yields and selectivities of carboxylic acids were also achieved with several allylic halides and aryl halides. An active catalyst, [Cu]@Ag composite, was synthesized for the first time and used as a cathode for electrocarboxylation of cinnamyl chloride with CO2.![]()
Collapse
Affiliation(s)
- La-Xia Wu
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Ying-Guo Zhao
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Ye-Bin Guan
- AnHui Province Key Laboratory of Functional Coordination Compounds
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Hui Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Yang-Chun Lan
- Department of Electrical and Electronic Engineering
- Southern University of Science and Technology
- ShenZhen 518055
- China
| | - Huan Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Jia-Xing Lu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|