1
|
Queralt-Martín M, Pérez-Grau JJ, Alvero González LM, Perini DA, Cervera J, Aguilella VM, Alcaraz A. Biphasic concentration patterns in ionic transport under nanoconfinement revealed in steady-state and time-dependent properties. J Chem Phys 2023; 158:064701. [PMID: 36792514 DOI: 10.1063/5.0136668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ion permeation across nanoscopic structures differs considerably from microfluidics because of strong steric constraints, transformed solvent properties, and charge-regulation effects revealed mostly in diluted solutions. However, little is known about nanofluidics in moderately concentrated solutions, which are critically important for industrial applications and living systems. Here, we show that nanoconfinement triggers general biphasic concentration patterns in a myriad of ion transport properties by using two contrasting systems: a biological ion channel and a much larger synthetic nanopore. Our findings show a low-concentration regime ruled by classical Debye screening and another one where ion-ion correlations and enhanced ion-surface interactions contribute differently to each electrophysiological property. Thus, different quantities (e.g., conductance vs noise) measured under the same conditions may appear contradictory because they belong to different concentration regimes. In addition, non-linear effects that are barely visible in bulk conductivity only in extremely concentrated solutions become apparent in nanochannels around physiological conditions.
Collapse
Affiliation(s)
- María Queralt-Martín
- Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, E-12071 Castellón, Spain
| | - José J Pérez-Grau
- Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, E-12071 Castellón, Spain
| | - Laidy M Alvero González
- Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, E-12071 Castellón, Spain
| | - D Aurora Perini
- Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, E-12071 Castellón, Spain
| | - Javier Cervera
- Departament de Física de la Terra i Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| | - Vicente M Aguilella
- Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, E-12071 Castellón, Spain
| | - Antonio Alcaraz
- Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, E-12071 Castellón, Spain
| |
Collapse
|
2
|
Fertig D, Valiskó M, Boda D. Rectification of bipolar nanopores in multivalent electrolytes: effect of charge inversion and strong ionic correlations. Phys Chem Chem Phys 2020; 22:19033-19045. [PMID: 32812580 DOI: 10.1039/d0cp03237a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bipolar nanopores have powerful rectification properties due to the asymmetry in the charge pattern on the wall of the nanopore. In particular, bipolar nanopores have positive and negative surface charges along the pore axis. Rectification is strong if the radius of the nanopore is small compared to the screening length of the electrolyte so that both cations and anions have depletion zones in the respective regions. The depths of these depletion zones is sensitive to sign of the external voltage. In this work, we are interested in the effect of the presence of strong ionic correlations (both between ions and between ions and surface charge) due to the presence of multivalent ions and large surface charges. We show that strong ionic correlations cause leakage of the coions, a phenomenon that is absent in mean field theories. In this modeling study, we use both the mean-field Poisson-Nernst-Planck (PNP) theory and a particle simulation method, Local Equilibrium Monte Carlo (LEMC), to show that phenomena such as overcharging and charge inversion cannot be reproduced with PNP, while LEMC is able to produce nonmonotonic dependence of currents and rectification as a function of surface charge strength.
Collapse
Affiliation(s)
- Dávid Fertig
- Department of Physical Chemistry, University of Pannonia, P. O. Box 158, H-8201 Veszprém, Hungary.
| | | | | |
Collapse
|
3
|
Wang ZY, Yang T, Wang X. Structural analysis of confined monovalent salts: Combined effects of steric hindrance, surface charge representation, and dielectric response. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Queralt-Martín M, López ML, Aguilella-Arzo M, Aguilella VM, Alcaraz A. Scaling Behavior of Ionic Transport in Membrane Nanochannels. NANO LETTERS 2018; 18:6604-6610. [PMID: 30178677 PMCID: PMC6242701 DOI: 10.1021/acs.nanolett.8b03235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ionic conductance in membrane channels exhibits a power-law dependence on electrolyte concentration ( G ∼ cα). The many scaling exponents, α, reported in the literature usually require detailed interpretations concerning each particular system under study. Here, we critically evaluate the predictive power of scaling exponents by analyzing conductance measurements in four biological channels with contrasting architectures. We show that scaling behavior depends on several interconnected effects whose contributions change with concentration so that the use of oversimplified models missing critical factors could be misleading. In fact, the presence of interfacial effects could give rise to an apparent universal scaling that hides the channel distinctive features. We complement our study with 3D structure-based Poisson-Nernst-Planck (PNP) calculations, giving results in line with experiments and validating scaling arguments. Our findings not only provide a unified framework for the study of ion transport in confined geometries but also highlight that scaling arguments are powerful and simple tools with which to offer a comprehensive perspective of complex systems, especially those in which the actual structure is unknown.
Collapse
Affiliation(s)
- María Queralt-Martín
- Section on Molecular Transport, Eunice Kennedy Shriver
NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - M. Lidón López
- Laboratory of Molecular Biophysics, Department of Physics,
Universitat Jaume I, Av. Vicent Sos Baynat s/n 12071 Castellón, Spain
| | - Marcel Aguilella-Arzo
- Laboratory of Molecular Biophysics, Department of Physics,
Universitat Jaume I, Av. Vicent Sos Baynat s/n 12071 Castellón, Spain
| | - Vicente M. Aguilella
- Laboratory of Molecular Biophysics, Department of Physics,
Universitat Jaume I, Av. Vicent Sos Baynat s/n 12071 Castellón, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics,
Universitat Jaume I, Av. Vicent Sos Baynat s/n 12071 Castellón, Spain
| |
Collapse
|
5
|
Ramirez P, Manzanares JA, Cervera J, Gomez V, Ali M, Pause I, Ensinger W, Mafe S. Nanopore charge inversion and current-voltage curves in mixtures of asymmetric electrolytes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Rezaei M, Azimian AR, Pishevar AR, Bonthuis DJ. Viscous interfacial layer formation causes electroosmotic mobility reversal in monovalent electrolytes. Phys Chem Chem Phys 2018; 20:22517-22524. [DOI: 10.1039/c8cp03655a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using molecular dynamics simulations, the ion density, shear viscosity and electroosmotic mobility of an aqueous monovalent electrolyte at a charged solid surface are studied as a function of the surface charge density.
Collapse
Affiliation(s)
- Majid Rezaei
- Department of Mechanical Engineering
- Isfahan University of Technology
- 8415683111 Isfahan
- Iran
- Fachbereich Physik
| | - Ahmad Reza Azimian
- Department of Mechanical Engineering
- Isfahan University of Technology
- 8415683111 Isfahan
- Iran
| | - Ahmad Reza Pishevar
- Department of Mechanical Engineering
- Isfahan University of Technology
- 8415683111 Isfahan
- Iran
| | | |
Collapse
|
7
|
Alcaraz A, López ML, Queralt-Martín M, Aguilella VM. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions. ACS NANO 2017; 11:10392-10400. [PMID: 28930428 DOI: 10.1021/acsnano.7b05529] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.
Collapse
Affiliation(s)
- Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I , Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain
| | - M Lidón López
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I , Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I , Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain
| | - Vicente M Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I , Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
8
|
Yu M, Qian L, Cui S. Reentrant Variation of Single-Chain Elasticity of Polyelectrolyte Induced by Monovalent Salt. J Phys Chem B 2017; 121:4257-4264. [DOI: 10.1021/acs.jpcb.7b00696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Miao Yu
- Key Laboratory of Advanced
Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Lu Qian
- Key Laboratory of Advanced
Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxun Cui
- Key Laboratory of Advanced
Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|