1
|
Zeng W, Wang Y, Peng C, Qiu Y. Organo-mediator enabled electrochemical transformations. Chem Soc Rev 2025; 54:4468-4501. [PMID: 40151968 DOI: 10.1039/d4cs01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Electrochemistry has emerged as a powerful means to facilitate redox transformations in modern chemical synthesis. This review focuses on organo-mediators that facilitate electrochemical reactions via outer-sphere electron transfer (ET) between active mediators and substrates, offering advantages over direct electrolysis due to their availability, ease of modification, and simple post-processing. They prevent overoxidation/reduction, enhance selectivity, and mitigate electrode passivation during the electrosynthesis. By modifying the structure of organo-mediators, those with tunable redox potentials enable electrosynthesis and avoid metal residues in the final products, making them promising for further application in synthetic chemistry, particularly in pharmacochemistry, where the maximum allowed level of the metal residue in synthetic samples is extremely strict. This review highlights the recent advancements in this rapidly growing area within the past two decades, including the electrochemical organo-mediated oxidation (EOMO) and electrochemical organo-mediated reduction (EOMR) events. The organo-mediator enabled electrochemical transformations are discussed according to the reaction type, which has been categorized into oxidation and reduction organic mediators.
Collapse
Affiliation(s)
- Weimei Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Chengyi Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
2
|
Wang C, Li J, Shao T, Zhang D, Mai Y, Li Y, Besenbacher F, Niemantsverdriet H, Rosei F, Zhong J, Su R. Electric Field Enhanced Ammoxidation of Aldehydes Using Supported Fe Clusters Under Ambient Oxygen Pressure. Angew Chem Int Ed Engl 2023:e202313313. [PMID: 37930876 DOI: 10.1002/anie.202313313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Heterogeneous catalytic ammoxidation provides an eco-friendly route for the cyanide-free synthesis of nitrile compounds, which are important precursors for synthetic chemistry and pharmaceutical applications. However, in general such a process requires high pressures of molecular oxygen at elevated temperatures to accelerate the oxygen reduction and imine dehydrogenation steps, which is highly risky in practical applications. Here, we report an electric field enhanced ammoxidation system using a supported Fe clusters catalyst (Fe/NC), which enables efficient synthesis of nitriles from the corresponding aldehydes under ambient air pressure at room temperature (RT). A synergistic effect between the external electric field and the Fe/NC catalyst promotes the ammonia activation and the dehydrogenation of the generated imine intermediates and avoids the unwanted backwards reaction to aldehydes. This electric field enhanced ammoxidation system presents high efficiency and selectivity for the conversion of a series of aldehydes under mild conditions with high durability, rendering it an attractive process for the green synthesis of nitriles with fragile functional groups.
Collapse
Affiliation(s)
- Chao Wang
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Jialu Li
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Tianyu Shao
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Dongsheng Zhang
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Yuanqiang Mai
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS, Taiyuan, 030001, China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Hans Niemantsverdriet
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
- Syngaschem BV, Valeriaanlaan 16, 5672 XD, Nuenen (The, Netherlands
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Ren Su
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| |
Collapse
|
3
|
Lin HS, Chen SJ, Huang JM. Electrosynthesis of (hetero)aryl nitriles from α-imino-oxy acids via oxidative decarboxylation/N-O cleavage. Chem Commun (Camb) 2022; 58:8974-8977. [PMID: 35861309 DOI: 10.1039/d2cc02986c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method for the synthesis of (hetero)aryl nitriles via iminyl radicals has been developed through the electrochemical oxidative decarboxylation of α-imino-oxy acids. This protocol provides an efficient approach to nitriles with a broad range of functional-group tolerance under ambient conditions and can be applied for one-pot gram-scale synthesis.
Collapse
Affiliation(s)
- Hui-Shan Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Shu-Jun Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
4
|
Rodrigues RM, Thadathil DA, Ponmudi K, George A, Varghese A. Recent Advances in Electrochemical Synthesis of Nitriles: A Sustainable Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202200081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roopa Margaret Rodrigues
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Keerthana Ponmudi
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Ashlay George
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| |
Collapse
|
5
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
6
|
Iwabuchi Y, Nagasawa S. The Utility of Oxoammonium Species in Organic Synthesis: Beyond Alcohol Oxidation. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-sr(r)2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Hua M, Song J, Huang X, Liu H, Fan H, Wang W, He Z, Liu Z, Han B. Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N‐
tri
‐Doped Hierarchically Porous Carbon Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manli Hua
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xin Huang
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Weitao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry College of Chemistry & Chemical Engineering Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
| | - Zhenhong He
- Shaanxi Key Laboratory of Chemical Additives for Industry College of Chemistry & Chemical Engineering Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
| | - Zhaotie Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry College of Chemistry & Chemical Engineering Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
8
|
Hua M, Song J, Huang X, Liu H, Fan H, Wang W, He Z, Liu Z, Han B. Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N-tri-Doped Hierarchically Porous Carbon Nanosheets. Angew Chem Int Ed Engl 2021; 60:21479-21485. [PMID: 34318968 DOI: 10.1002/anie.202107996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Oxidative cyanation of aldehydes provides a promising strategy for the cyanide-free synthesis of organic nitriles. Design of robust and cost-effective catalysts is the key for this route. Herein, we designed a series of Se,S,N-tri-doped carbon nanosheets with a hierarchical porous structure (denoted as Se,S,N-CNs-x, x represents the pyrolysis temperature). It was found that the obtained Se,S,N-CNs-1000 was very selective and efficient for oxidative cyanation of various aldehydes including those containing other oxidizable groups into the corresponding nitriles using ammonia as the nitrogen resource below 100 °C. Detailed investigations revealed that the excellent performance of Se,S,N-CNs-1000 originated mainly from the graphitic-N species with lower electron density and synergistic effect between the Se, S, N, and C in the catalyst. Besides, the hierarchically porous structure could also promote the reaction. Notably, the unique feature of this metal-free catalyst is that it tolerated other oxidizable groups, and showed no activity on further reaction of the products, thereby resulting in high selectivity. As far as we know, this is the first work for the synthesis of nitriles via oxidative cyanation of aldehydes over heterogeneous metal-free catalysts.
Collapse
Affiliation(s)
- Manli Hua
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin Huang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weitao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Zhenhong He
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Zhaotie Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Kang S, Lee JC. Facile Preparation of Aryl Nitriles from Aryl Aldehydes in PEG-DME 250. LETT ORG CHEM 2021. [DOI: 10.2174/1570178618666210909103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
A facie and efficient method for one-pot transformation of aryl aldehydes to aryl nitriles using hydroxylamine hydrochloride and phosphorus tribromide in PEG-DME 250 is reported. The conversion of various aryl aldehydes to the corresponding aryl nitriles occurred smoothly in high yields under the present reaction conditions.
Collapse
Affiliation(s)
- Solbe Kang
- Department of Chemistry, College of Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Jong Chan Lee
- Department of Chemistry, College of Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
10
|
Prakash N, Rajeev R, John A, Vijayan A, George L, Varghese A. 2,2,6,6‐Tetramethylpiperidinyloxyl (TEMPO) Radical Mediated Electro‐Oxidation Reactions: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202102346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nishitha Prakash
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | - Rijo Rajeev
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | - Anjali John
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | - Ajesh Vijayan
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | - Louis George
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| |
Collapse
|
11
|
Niu P, Cai Y, Guo M, Shen Z, Li M. Preparation and electrochemical performance of TEMPO-modified polyterthiophene electrode obtained by electropolymerization. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2019.106623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
12
|
Liu X, Niu P, Jin J, Shen Z, Li M. Electrochemical access to aryl sulfides from aryl thiols and electron-rich arenes with the potassium iodide as a mediator. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Nandi J, Leadbeater NE. Visible-light-driven catalytic oxidation of aldehydes and alcohols to nitriles by 4-acetamido-TEMPO using ammonium carbamate as a nitrogen source. Org Biomol Chem 2019; 17:9182-9186. [PMID: 31595927 DOI: 10.1039/c9ob01918a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and efficient route to prepare nitriles from aldehydes by combining photoredox catalysis with oxoammonium cations is reported. The reaction is performed using ammonium carbamate as the nitrogen source. The practicality of the method is increased by the extension of the dual catalytic system to one-pot two-step conversion of alcohols to nitriles.
Collapse
Affiliation(s)
- Jyoti Nandi
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | | |
Collapse
|
14
|
Niu P, Liu X, Shen Z, Li M. Electrochemical Performance of ABNO for Oxidation of Secondary Alcohols in Acetonitrile Solution. Molecules 2018; 24:E100. [PMID: 30597882 PMCID: PMC6337132 DOI: 10.3390/molecules24010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
The ketones was successfully prepared from secondary alcohols using 9-azabicyclo[3.3.1]nonane-N-oxyl (ABNO) as the catalyst and 2,6-lutidine as the base in acetonitrile solution. The electrochemical activity of ABNO for oxidation of 1-phenylethanol was investigated by cyclic voltammetry, in situ Fourier transform infrared spectroscopy (FTIR) and constant current electrolysis experiments. The resulting cyclic voltammetry indicated that ABNO exhibited much higher electrochemical activity when compared with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) under the similar conditions. A reasonable reaction mechanism of the electrocatalytic oxidation of 1-phenylethanol to acetophenone was proposed. In addition, a series of secondary alcohols could be converted to the corresponding ketones at room temperature in 80⁻95% isolated yields.
Collapse
Affiliation(s)
- Pengfei Niu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Xin Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
15
|
Wan Y, Ma JQ, Hong C, Li MC, Jin LQ, Hu XQ, Hu BX, Mo WM, Sun N, Shen ZL. Direct synthesis of imines by 9-azabicyclo-[3,3,1]nonan-N-oxyl/KOH-catalyzed aerobic oxidative coupling of alcohols and amines. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Nutting JE, Rafiee M, Stahl SS. Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. Chem Rev 2018; 118:4834-4885. [PMID: 29707945 DOI: 10.1021/acs.chemrev.7b00763] [Citation(s) in RCA: 569] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
N-Oxyl compounds represent a diverse group of reagents that find widespread use as catalysts for the selective oxidation of organic molecules in both laboratory and industrial applications. While turnover of N-oxyl catalysts in oxidation reactions may be accomplished with a variety of stoichiometric oxidants, N-oxyl reagents have also been extensively used as catalysts under electrochemical conditions in the absence of chemical oxidants. Several classes of N-oxyl compounds undergo facile redox reactions at electrode surfaces, enabling them to mediate a wide range of electrosynthetic reactions. Electrochemical studies also provide insights into the structural properties and mechanisms of chemical and electrochemical catalysis by N-oxyl compounds. This review provides a comprehensive survey of the electrochemical properties and electrocatalytic applications of aminoxyls, imidoxyls, and related reagents, of which the two prototypical and widely used examples are 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) and phthalimide N-oxyl (PINO).
Collapse
Affiliation(s)
- Jordan E Nutting
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Mohammad Rafiee
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Shannon S Stahl
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
17
|
Hu Y, Chen L, Li B. Practical CuCl/DABCO/4-HO-TEMPO-catalyzed oxidative synthesis of nitriles from alcohols with air as oxidant. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Kim MJ, Mun J, Kim J. Oxoammonium salt-mediated oxidative nitriles synthesis from aldehydes with ammonium acetate. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Yuan B, Xu C, Zhang D, Zhang R, Su H, Guan P, Nie J, Fernandez C. Electrografting of amino-TEMPO on graphene oxide and electrochemically reduced graphene oxide for electrocatalytic applications. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Ma J, Wan Y, Hong C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. ABNO-Catalyzed Aerobic Oxidative Synthesis of 2-Substituted 4H
-3,1-Benzoxazines and Quinazolines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700384] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiaqi Ma
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou People's Republic of China
| | - Yan Wan
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou People's Republic of China
| | - Chao Hong
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou People's Republic of China
| | - Meichao Li
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou People's Republic of China
| | - Xinquan Hu
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou People's Republic of China
| | - Weimin Mo
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou People's Republic of China
| | - Baoxiang Hu
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou People's Republic of China
| | - Nan Sun
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou People's Republic of China
| | - Liqun Jin
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou People's Republic of China
| | - Zhenlu Shen
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou People's Republic of China
| |
Collapse
|
21
|
Electrocatalytic synthesis of nitriles from aldehydes with ammonium acetate as the nitrogen source. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Fang C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. A practical iodine-catalyzed oxidative conversion of aldehydes to nitriles. RSC Adv 2017. [DOI: 10.1039/c6ra26435b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A simple and efficient method for the direct synthesis of nitriles from aldehydes using ammonium acetate as the nitrogen source, iodine as the catalyst, and tert-butyl hydroperoxide (TBHP) as the oxidant was developed.
Collapse
Affiliation(s)
- Chaojie Fang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Meichao Li
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Xinquan Hu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Weimin Mo
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Baoxiang Hu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Nan Sun
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Liqun Jin
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Zhenlu Shen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
23
|
Masjed SM, Akhlaghinia B, Zarghani M, Razavi N. Direct Synthesis of Nitriles from Aldehydes and Hydroxylamine Hydrochloride Catalyzed by a HAP@AEPH2-SO3H Nanocatalyst. Aust J Chem 2017. [DOI: 10.1071/ch16126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We describe an efficient method for the direct preparation of nitriles from aldehydes and hydroxylamine hydrochloride catalyzed by sulfonated nanohydroxyapatite functionalized by 2-aminoethyl dihydrogen phosphate (HAP@AEPH2-SO3H) as an eco-friendly and recyclable solid acid nanocatalyst. In this protocol the use of a solid acid nanocatalyst provides a green, useful, and rapid method for the preparation of nitriles in excellent yields. In addition, the notable feature of this methodolgy is that the synthesized nanocatalyst can be recovered and reused five times without any noticeable loss of efficiency.
Collapse
|