1
|
Luo J, Liu S, Chen Y, Tan J, Zhao W, Zhang Y, Li G, Du Y, Zheng Y, Li X, Li H, Tan Y. Light Addressable Potentiometric Sensors for Biochemical Imaging on Microscale: A Review on Optimization of Imaging Speed and Spatial Resolution. ACS OMEGA 2023; 8:42028-42044. [PMID: 38024735 PMCID: PMC10652365 DOI: 10.1021/acsomega.3c04789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Light addressable potentiometric sensors (LAPS) are a competitive tool for unmarked biochemical imaging, especially imaging on microscale. It is essential to optimize the imaging speed and spatial resolution of LAPS since the imaging targets of LAPS, such as cell, microfluidic channel, etc., require LAPS to image at the micrometer level, and a fast enough imaging speed is a prerequisite for the dynamic process involved in biochemical imaging. In this study, we discuss the improvement of LAPS in terms of imaging speed and spatial resolution. The development of LAPS in imaging speed and spatial resolution is demonstrated by the latest applications of biochemistry monitoring and imaging on the microscale.
Collapse
Affiliation(s)
- Jiezhang Luo
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Shibin Liu
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yinhao Chen
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Jie Tan
- School
of Electrical Engineering and Electronic Information, Xihua University, Chengdou, Sichuan 610097, People’s Republic of China
| | - Wenbo Zhao
- Institute
of Flexible Electronics, Northwestern Polytechnical
University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yun Zhang
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Guifang Li
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yongqian Du
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yaoxin Zheng
- Beijing
Automation Control Equipment Institute, Beijing 100074, People’s Republic of China
| | - Xueliang Li
- School
of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, People’s Republic of China
| | - Huijuan Li
- College of
Electrical Engineering, Shaanxi Polytechnic
Institute, Xianyang, Shaanxi 712000, People’s Republic of China
| | - Yue Tan
- School
of Electronics and Information, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| |
Collapse
|
2
|
Jacques R, Zhou B, Marhuenda E, Gorecki J, Das A, Iskratsch T, Krause S. Photoelectrochemical imaging of single cardiomyocytes and monitoring of their action potentials through contact force manipulation of organoids. Biosens Bioelectron 2023; 223:115024. [PMID: 36577176 DOI: 10.1016/j.bios.2022.115024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Accurate monitoring of cardiomyocyte action potentials (APs) is essential to understand disease propagation and for trials of novel therapeutics. Patch clamp techniques offer 'gold standard' measurements in this field, but are notoriously difficult to operate and only provide measurements of a single cell. Here we propose photoelectrochemical imaging (PEI) with light-addressable potentiometric sensors (LAPS) in conjunction with a setup for controlling the contact force between the cardiomyocyte organoids and the sensor surface for measuring APs with high sensitivity. The method was validated through measuring the responses to drugs, and the results successfully visualized the expected electrophysiological changes to the APs. PEI allows for several cells to be monitored simultaneously, opening further research to the electrophysiological interactions of adjoining cells. This method expands the applications of PEI to three-dimensional geometries and provides the fields of stem cell research, drug trials and heart disease modelling with an invaluable tool to further investigate the role of APs.
Collapse
Affiliation(s)
- Rachel Jacques
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Bo Zhou
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Emilie Marhuenda
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Jon Gorecki
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Anirban Das
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
3
|
Urease-modified LAPS: Two-dimensional dynamic detection of enzymatic reactions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Visualization of electrochemical reactions on microelectrodes using light-addressable potentiometric sensor imaging. Anal Chim Acta 2022; 1224:340237. [DOI: 10.1016/j.aca.2022.340237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
|
5
|
Meng Y, Chen F, Wu C, Krause S, Wang J, Zhang DW. Light-Addressable Electrochemical Sensors toward Spatially Resolved Biosensing and Imaging Applications. ACS Sens 2022; 7:1791-1807. [PMID: 35762514 DOI: 10.1021/acssensors.2c00940] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The light-addressable electrochemical sensor (LAES) is a recently emerged bioanalysis technique combining electrochemistry with the photoelectric effect in a semiconductor. In an LAES, a semiconductor substrate is illuminated locally to generate charge carriers in a well-defined area, thereby confining the electrochemical process to a target site. Benefiting from the unique light addressability, an LAES can not only detect multiple analytes in parallel within a single sensor plate but also act as a bio(chemical) imaging sensor to visualize the two-dimensional distribution of specific analytes. An LAES usually has three working modes: a potentiometric mode using light-addressable potentiometric sensors (LAPS) and an impedance mode using scanning photoinduced impedance microscopy (SPIM), while an amperometric mode refers to light-addressable electrochemistry (LAE) and photoelectrochemical (PEC) sensing. In this review, we describe the detection principles of each mode of LAESs and the concept of light addressability. In addition, we highlight the recent progress and advance of LAESs in spatial resolution, sensor system design, multiplexed detection, and bio(chemical) imaging applications. An outlook on current research challenges and future prospects is also presented.
Collapse
Affiliation(s)
- Yao Meng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fangming Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Jian Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - De-Wen Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| |
Collapse
|
6
|
The Light-Addressable Potentiometric Sensor and Its Application in Biomedicine towards Chemical and Biological Sensing. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The light-addressable potential sensor (LAPS) was invented in 1988 and has developed into a multi-functional platform for chemical and biological sensing in recent decades. Its surface can be flexibly divided into multiple regions or pixels through light addressability, and each of them can be sensed independently. By changing sensing materials and optical systems, the LAPS can measure different ions or molecules, and has been applied to the sensing of various chemical and biological molecules and cells. In this review, we firstly describe the basic principle of LAPS and the general configuration of a LAPS measurement system. Then, we outline the most recent applications of LAPS in chemical sensing, biosensing and cell monitoring. Finally, we enumerate and analyze the development trends of LAPS from the aspects of material and optical improvement, hoping to provide a research and application perspective for chemical sensing, biosensing and imaging technology.
Collapse
|
7
|
Nii K, Inami W, Kawata Y. High Spatial Resolution Ion Imaging by Focused Electron-Beam Excitation with Nanometric Thin Sensor Substrate. SENSORS (BASEL, SWITZERLAND) 2022; 22:1112. [PMID: 35161857 PMCID: PMC8840732 DOI: 10.3390/s22031112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
We developed a high spatially-resolved ion-imaging system using focused electron beam excitation. In this system, we designed a nanometric thin sensor substrate to improve spatial resolution. The principle of pH measurement is similar to that of a light-addressable potentiometric sensor (LAPS), however, here the focused electron beam is used as an excitation carrier instead of light. A Nernstian-like pH response with a pH sensitivity of 53.83 mV/pH and linearity of 96.15% was obtained. The spatial resolution of the imaging system was evaluated by applying a photoresist to the sensing surface of the ion-sensor substrate. A spatial resolution of 216 nm was obtained. We achieved a substantially higher spatial resolution than that reported in the LAPS systems.
Collapse
Affiliation(s)
- Kiyohisa Nii
- Graduate School of Medical Photonics, Shizuoka University, 3-5-1 Johoku, Naka, Hamamatsu 432-8011, Japan;
| | - Wataru Inami
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka, Hamamatsu 432-8011, Japan;
| | - Yoshimasa Kawata
- Graduate School of Medical Photonics, Shizuoka University, 3-5-1 Johoku, Naka, Hamamatsu 432-8011, Japan;
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka, Hamamatsu 432-8011, Japan;
| |
Collapse
|
8
|
Wang J, Tian Y, Chen F, Chen W, Du L, He Z, Wu C, Zhang DW. Scanning Electrochemical Photometric Sensors for Label-Free Single-Cell Imaging and Quantitative Absorption Analysis. Anal Chem 2020; 92:9739-9744. [PMID: 32437169 DOI: 10.1021/acs.analchem.0c01118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new photoelectrochemical imaging method termed scanning electrochemical photometric sensor (SEPS) is proposed in this work. It was derived from light-addressable potentiometric sensor (LAPS) and scanning photoinduced impedance microscopy (SPIM) using a front-side laser illumination at a field-effect structure. When the laser beam scans across the sensor substrate, local photocurrent changes at inversion due to the light absorption of analytes can be recorded. It will be shown that SEPS could be used for label-free living cell imaging with micro-resolution as well as real-time quantitative absorption analysis, which would broaden the applications of traditional LAPS/SPIM from potentiometric/impedance measurements to local optical analysis.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yulan Tian
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Fangming Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhiyuan He
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - De-Wen Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
9
|
Dantism S, Röhlen D, Wagner T, Wagner P, Schöning MJ. A LAPS-Based Differential Sensor for Parallelized Metabolism Monitoring of Various Bacteria. SENSORS 2019; 19:s19214692. [PMID: 31671716 PMCID: PMC6864667 DOI: 10.3390/s19214692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022]
Abstract
Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.
Collapse
Affiliation(s)
- Shahriar Dantism
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Désirée Röhlen
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, Wilhelm-Johnen-Straße 1, 52425 Jülich, Germany.
| | - Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, Wilhelm-Johnen-Straße 1, 52425 Jülich, Germany.
| |
Collapse
|
10
|
InGaN as a Substrate for AC Photoelectrochemical Imaging. SENSORS 2019; 19:s19204386. [PMID: 31614420 PMCID: PMC6832470 DOI: 10.3390/s19204386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
Abstract
AC photoelectrochemical imaging at electrolyte–semiconductor interfaces provides spatially resolved information such as surface potentials, ion concentrations and electrical impedance. In this work, thin films of InGaN/GaN were used successfully for AC photoelectrochemical imaging, and experimentally shown to generate a considerable photocurrent under illumination with a 405 nm modulated diode laser at comparatively high frequencies and low applied DC potentials, making this a promising substrate for bioimaging applications. Linear sweep voltammetry showed negligible dark currents. The imaging capabilities of the sensor substrate were demonstrated with a model system and showed a lateral resolution of 7 microns.
Collapse
|
11
|
Liang T, Qiu Y, Gan Y, Sun J, Zhou S, Wan H, Wang P. Recent Developments of High-Resolution Chemical Imaging Systems Based on Light-Addressable Potentiometric Sensors (LAPSs). SENSORS 2019; 19:s19194294. [PMID: 31623395 PMCID: PMC6806070 DOI: 10.3390/s19194294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022]
Abstract
A light-addressable potentiometric sensor (LAPS) is a semiconductor electrochemical sensor based on the field-effect which detects the variation of the Nernst potential on the sensor surface, and the measurement area is defined by illumination. Thanks to its light-addressability feature, an LAPS-based chemical imaging sensor system can be developed, which can visualize the two-dimensional distribution of chemical species on the sensor surface. This sensor system has been used for the analysis of reactions and diffusions in various biochemical samples. In this review, the LAPS system set-up, including the sensor construction, sensing and substrate materials, modulated light and various measurement modes of the sensor systems are described. The recently developed technologies and the affecting factors, especially regarding the spatial resolution and temporal resolution are discussed and summarized, and the advantages and limitations of these technologies are illustrated. Finally, the further applications of LAPS-based chemical imaging sensors are discussed, where the combination with microfluidic devices is promising.
Collapse
Affiliation(s)
- Tao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- State Key Laboratory of Transducer Technology, Shanghai 200050, China.
| | - Yong Qiu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ying Gan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jiadi Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shuqi Zhou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- State Key Laboratory of Transducer Technology, Shanghai 200050, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- State Key Laboratory of Transducer Technology, Shanghai 200050, China.
| |
Collapse
|
12
|
Wu F, Zhou B, Wang J, Zhong M, Das A, Watkinson M, Hing K, Zhang DW, Krause S. Photoelectrochemical Imaging System for the Mapping of Cell Surface Charges. Anal Chem 2019; 91:5896-5903. [DOI: 10.1021/acs.analchem.9b00304] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Wu
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Bo Zhou
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Jian Wang
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Muchun Zhong
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Anirban Das
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Michael Watkinson
- The Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, U.K
| | - Karin Hing
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - De-Wen Zhang
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
13
|
Tu Y, Ahmad N, Briscoe J, Zhang DW, Krause S. Light-Addressable Potentiometric Sensors Using ZnO Nanorods as the Sensor Substrate for Bioanalytical Applications. Anal Chem 2018; 90:8708-8715. [PMID: 29932632 DOI: 10.1021/acs.analchem.8b02244] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Light-addressable potentiometric sensors (LAPS) are of great interest in bioimaging applications such as the monitoring of concentrations in microfluidic channels or the investigation of metabolic and signaling events in living cells. By measuring the photocurrents at electrolyte-insulator-semiconductor (EIS) and electrolyte-semiconductor structures, LAPS can produce spatiotemporal images of chemical or biological analytes, electrical potentials and impedance. However, its commercial applications are often restricted by their limited AC photocurrents and resolution of LAPS images. Herein, for the first time, the use of 1D semiconducting oxides in the form of ZnO nanorods for LAPS imaging is explored to solve this issue. A significantly increased AC photocurrent with enhanced image resolution has been achieved based on ZnO nanorods, with a photocurrent of 45.7 ± 0.1 nA at a light intensity of 0.05 mW, a lateral resolution as low as 3.0 μm as demonstrated by images of a PMMA dot on ZnO nanorods and a pH sensitivity of 53 mV/pH. The suitability of the device for bioanalysis and bioimaging was demonstrated by monitoring the degradation of a thin poly(ester amide) film with the enzyme α-chymotrypsin using LAPS. This simple and robust route to fabricate LAPS substrates with excellent performance would provide tremendous opportunities for bioimaging.
Collapse
Affiliation(s)
- Ying Tu
- Materials Research Institute and School of Engineering and Material Science , Queen Mary University of London , Mile End Road , London , E1 4NS , United Kingdom
| | - Norlaily Ahmad
- Materials Research Institute and School of Engineering and Material Science , Queen Mary University of London , Mile End Road , London , E1 4NS , United Kingdom.,Centre of Foundation Studies , Universiti Teknologi MARA , Cawangan Selangor, Kampus Dengkil , 43800 Dengkil , Malaysia
| | - Joe Briscoe
- Materials Research Institute and School of Engineering and Material Science , Queen Mary University of London , Mile End Road , London , E1 4NS , United Kingdom
| | - De-Wen Zhang
- Materials Research Institute and School of Engineering and Material Science , Queen Mary University of London , Mile End Road , London , E1 4NS , United Kingdom.,Institute of Materials , China Academic of Engineering Physics , Jiangyou , 621908 , Sichuan , China
| | - Steffi Krause
- Materials Research Institute and School of Engineering and Material Science , Queen Mary University of London , Mile End Road , London , E1 4NS , United Kingdom
| |
Collapse
|
14
|
Dantism S, Takenaga S, Wagner T, Wagner P, Schöning MJ. Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Wu F, Campos I, Zhang DW, Krause S. Biological imaging using light-addressable potentiometric sensors and scanning photo-induced impedance microscopy. Proc Math Phys Eng Sci 2017; 473:20170130. [PMID: 28588418 DOI: 10.1098/rspa.2017.0130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/07/2017] [Indexed: 11/12/2022] Open
Abstract
Light-addressable potentiometric sensors (LAPS) and scanning photo-induced impedance microscopy (SPIM) use photocurrent measurements at electrolyte-insulator-semiconductor substrates for spatio-temporal imaging of electrical potentials and impedance. The techniques have been used for the interrogation of sensor arrays and the imaging of biological systems. Sensor applications range from the detection of different types of ions and the label-free detection of charged molecules such as DNA and proteins to enzyme-based biosensors. Imaging applications include the temporal imaging of extracellular potentials and dynamic concentration changes in microfluidic channels and the lateral imaging of cell surface charges and cell metabolism. This paper will investigate the current state of the art of the measurement technology with a focus on spatial and temporal resolution and review the biological applications, these techniques have been used for. An outlook on future developments in the field will be given.
Collapse
Affiliation(s)
- Fan Wu
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Inmaculada Campos
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - De-Wen Zhang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, Sichuan, People's Republic of China
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
16
|
Wu F, Zhang DW, Wang J, Watkinson M, Krause S. Copper Contamination of Self-Assembled Organic Monolayer Modified Silicon Surfaces Following a "Click" Reaction Characterized with LAPS and SPIM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3170-3177. [PMID: 28285531 DOI: 10.1021/acs.langmuir.6b03831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) reaction combined with microcontact printing was used successfully to pattern alkyne-terminated self-assembled organic monolayer-modified silicon surfaces. Despite the absence of a copper peak in X-ray photoelectron spectra, copper contamination was found and visualized using light-addressable potentiometric sensors (LAPS) and scanning photo-induced impedance microscopy (SPIM) after the "click"-modified silicon surfaces were rinsed with hydrochloric acid (HCl) solution, which was frequently used to remove copper residues in the past. Even cleaning with an ethylenediaminetetraacetic acid (EDTA) solution did not remove the copper residue completely. Different strategies for avoiding copper contamination, including the use of bulky chelators for the copper(I) catalyst and rinsing with different reagents, were tested. Only cleaning of the silicon surfaces with an EDTA solution containing trifluoroacetic acid (TFA) after the click modification proved to be an effective method as confirmed by LAPS and SPIM results, which showed the expected potential shift due to the surface charge introduced by functional groups in the monolayer and allowed, for the first time, imaging the impedance of an organic monolayer.
Collapse
Affiliation(s)
| | - De-Wen Zhang
- Institute of Materials, China Academy of Engineering Physics , Jiangyou 621908, Sichuan, P.R. China
| | - Jian Wang
- Institute of Medical Engineering, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center , Xi'an 710061, P.R. China
| | | | | |
Collapse
|