1
|
Bai J, Li M, Xing F, Wei X, Liu J. Electrically Driven Biocatalysis for Sustainable CO 2-to-Chemicals Transformation. CHEMSUSCHEM 2025:e2500334. [PMID: 40229208 DOI: 10.1002/cssc.202500334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
The catalytic transformation of CO2 into value-added chemicals has become a critical strategy for mitigating environmental issues and generating economic benefits. Although substantial progress has been made in renewable electricity-driven CO2 conversion into C1/C2 products, the efficient synthesis of high-value, and long-chain compounds remains a significant challenge. Biosynthesis offers a feasible route for producing long-chain value-added products at mild conditions. Consequently, the integration of electrocatalysis with bioconversion has emerged as a promising approach for sustainable CO2 conversion. This short review outlines recent advances in the sustainable synthesis of long-chain compounds from CO2 via electrically driven biocatalysis, highlighting innovative coupling strategies that combine electrochemical and biochemical processes. Furthermore, the remaining challenges and prospects are tentatively discussed for further advancing CO2-based sustainable synthesis.
Collapse
Affiliation(s)
- Jingwen Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Mingchang Li
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- College of Materials Science and Engineering, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Fangshu Xing
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xinfa Wei
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
2
|
Ichikawa K, Adachi T, Sowa K. Structural bioelectrochemistry of direct electron transfer-type multimeric dehydrogenases: Basic principle and rational strategies. Bioelectrochemistry 2025; 165:108973. [PMID: 40121792 DOI: 10.1016/j.bioelechem.2025.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Direct electron transfer (DET)-type bioelectrocatalysis, a coupled enzymatic and electrode reaction without redox mediators, provides insights into enzyme properties that facilitate the construction of efficient biomimetic devices. Because many DET-type multimeric dehydrogenases are membrane-bound proteins, obtaining the overall steric structures of these enzymes using conventional X-ray crystallography has proved difficult for many decades. Novel cryo-electron microscopy (cryo-EM) and single-particle image analysis have recently been developed that enable elucidation of the overall structure of membrane-bound DET-type multimeric dehydrogenases. In particular, "structural bioelectrochemistry," a fusion of structural biology and bioelectrochemistry, has enabled rapid hypothesis testing via the analysis of three-dimensional (3D) structures using enzyme engineering and electrochemistry. This review outlines critical related studies in the last decade and the epoch-making breakthroughs leading to next-generation applications.
Collapse
Affiliation(s)
- Konatsu Ichikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Taiki Adachi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
3
|
Lemaire O, Wagner T. All-in-One CO 2 Capture and Transformation: Lessons from Formylmethanofuran Dehydrogenases. Acc Chem Res 2024; 57:3512-3523. [PMID: 39584476 PMCID: PMC11656701 DOI: 10.1021/acs.accounts.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Carbon-one-unit (C1) feedstocks are generally used in the chemical synthesis of organic molecules, such as solvents, drugs, polymers, and fuels. Contrary to the dangerous and polluting carbon monoxide mostly coming from fossil fuels, formate and formamide are attractive alternative feedstocks for chemical synthesis. As these are currently mainly obtained from the oil industry, novel synthetic routes have been developed based on the transformation of the greenhouse gas CO2. Such developments are motivated by the urgent need for carbon chemical recycling, leading to a sustainable future. The inert nature of CO2 represents a challenge for chemists to activate and specifically convert the molecule through an affordable and efficient process. The chemical transformation could be inspired by biological CO2 activation, in which highly specialized enzymes perform atmospheric CO2 fixation through relatively abundant metal catalysts. In this Account, we describe and discuss the potential of one of the most efficient biological CO2-converting systems: the formylmethanofuran dehydrogenase (abbreviated as FMD).FMDs are multienzymatic complexes found in archaea that capture CO2 as a formyl group branched on the amine moiety of the methanofuran (MFR) cofactor. This overall reaction leading to formyl-MFR production does not require ATP hydrolysis as compared to the CO2-fixing microbes relying on the reductive Wood-Ljungdahl pathway, highlighting a different operative mode that saves cellular energy. FMD reaction represents the entry point in hydrogenotrophic methanogenesis (H2 and CO2 dependent or formate dependent) and operates in reverse in other methanogenic pathways and microbial metabolisms. Therefore, FMD is a key enzyme in the planetary carbon cycle. After decades of investigations, recent studies have provided a description of the FMD structure, reaction mechanism, and potential for the electroreduction of CO2, to which our laboratory has been actively contributing. FMD is an "all-in-one" enzyme catalyzing a redox-active transformation coupled to a redox-neutral transformation at two very different metal cofactors where new C-H and C-N bonds are made. First, the principle of the overall reaction consisting of an exergonic CO2 reduction coupled with an endergonic formate condensation on MFR is resumed. Then, this Account exposes the molecular details of the active sites and provides an overview of each catalytic mechanism. It also describes the natural versatility of electron-delivery modules fueling CO2 reduction and extends it to the possibilities of using artificial systems such as electrodes. A perspective concludes on how the mechanistic of FMD could be applied to produce CO2-based chemical intermediates to synthesize organic molecules. Indeed, through its biochemical properties, the enzyme opens opportunities for CO2 electroreduction to generate molecules such as formate and formamide derivatives, which are all intermediates for synthesizing organic compounds. Transferring the chemical knowledge acquired from these biological systems would provide coherent models that can lead to further development in the field of synthetic biology and bio-inspired synthetic chemistry to perform large-scale CO2 conversion into building blocks for chemical synthesis.
Collapse
Affiliation(s)
- Olivier
N. Lemaire
- Max Planck Institute for
Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | | |
Collapse
|
4
|
Cobb SJ, Rodríguez‐Jiménez S, Reisner E. Connecting Biological and Synthetic Approaches for Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202310547. [PMID: 37983571 PMCID: PMC11497245 DOI: 10.1002/anie.202310547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Electrocatalytic CO2 reduction has developed into a broad field, spanning fundamental studies of enzymatic 'model' catalysts to synthetic molecular catalysts and heterogeneous gas diffusion electrodes producing commercially relevant quantities of product. This diversification has resulted in apparent differences and a disconnect between seemingly related approaches when using different types of catalysts. Enzymes possess discrete and well understood active sites that can perform reactions with high selectivity and activities at their thermodynamic limit. Synthetic small molecule catalysts can be designed with desired active site composition but do not yet display enzyme-like performance. These properties of the biological and small molecule catalysts contrast with heterogeneous materials, which can contain multiple, often poorly understood active sites with distinct reactivity and therefore introducing significant complexity in understanding their activities. As these systems are being better understood and the continuously improving performance of their heterogeneous active sites closes the gap with enzymatic activity, this performance difference between heterogeneous and enzymatic systems begins to close. This convergence removes the barriers between using different types of catalysts and future challenges can be addressed without multiple efforts as a unified picture for the biological-synthetic catalyst spectrum emerges.
Collapse
Affiliation(s)
- Samuel J. Cobb
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
5
|
Kalimuthu P, Hakopian S, Niks D, Hille R, Bernhardt PV. The Reversible Electrochemical Interconversion of Formate and CO 2 by Formate Dehydrogenase from Cupriavidus necator. J Phys Chem B 2023; 127:8382-8392. [PMID: 37728992 DOI: 10.1021/acs.jpcb.3c04652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The bacterial molybdenum (Mo)-containing formate dehydrogenase (FdsDABG) from Cupriavidus necator is a soluble NAD+-dependent enzyme belonging to the DMSO reductase family. The holoenzyme is complex and possesses nine redox-active cofactors including a bis(molybdopterin guanine dinucleotide) (bis-MGD) active site, seven iron-sulfur clusters, and 1 equiv of flavin mononucleotide (FMN). FdsDABG catalyzes the two-electron oxidation of HCOO- (formate) to CO2 and reversibly reduces CO2 to HCOO- under physiological conditions close to its thermodynamic redox potential. Here we develop an electrocatalytically active formate oxidation/CO2 reduction system by immobilizing FdsDABG on a glassy carbon electrode in the presence of coadsorbents such as chitosan and glutaraldehyde. The reversible enzymatic interconversion between HCOO- and CO2 by FdsDABG has been realized with cyclic voltammetry using a range of artificial electron transfer mediators, with methylene blue (MB) and phenazine methosulfate (PMS) being particularly effective as electron acceptors for FdsDABG in formate oxidation. Methyl viologen (MV) acts as both an electron acceptor (MV2+) in formate oxidation and an electron donor (MV+•) for CO2 reduction. The catalytic voltammetry was reproduced by electrochemical simulation across a range of sweep rates and concentrations of formate and mediators to provide new insights into the kinetics of the FdsDABG catalytic mechanism.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Sheron Hakopian
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Russ Hille
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
6
|
Sapountzaki E, Rova U, Christakopoulos P, Antonopoulou I. Renewable Hydrogen Production and Storage Via Enzymatic Interconversion of CO 2 and Formate with Electrochemical Cofactor Regeneration. CHEMSUSCHEM 2023; 16:e202202312. [PMID: 37165995 DOI: 10.1002/cssc.202202312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
The urgent need to reduce CO2 emissions has motivated the development of CO2 capture and utilization technologies. An emerging application is CO2 transformation into storage chemicals for clean energy carriers. Formic acid (FA), a valuable product of CO2 reduction, is an excellent hydrogen carrier. CO2 conversion to FA, followed by H2 release from FA, are conventionally chemically catalyzed. Biocatalysts offer a highly specific and less energy-intensive alternative. CO2 conversion to formate is catalyzed by formate dehydrogenase (FDH), which usually requires a cofactor to function. Several FDHs have been incorporated in bioelectrochemical systems where formate is produced by the biocathode and the cofactor is electrochemically regenerated. H2 production from formate is also catalyzed by several microorganisms possessing either formate hydrogenlyase or hydrogen-dependent CO2 reductase complexes. Combination of these two processes can lead to a CO2 -recycling cycle for H2 production, storage, and release with potentially lower environmental impact than conventional methods.
Collapse
Affiliation(s)
- Eleftheria Sapountzaki
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| |
Collapse
|
7
|
Kobayashi A, Taketa M, Sowa K, Kano K, Higuchi Y, Ogata H. Structure and function relationship of formate dehydrogenases: an overview of recent progress. IUCRJ 2023; 10:544-554. [PMID: 37668215 PMCID: PMC10478512 DOI: 10.1107/s2052252523006437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023]
Abstract
Formate dehydrogenases (FDHs) catalyze the two-electron oxidation of formate to carbon dioxide. FDHs can be divided into several groups depending on their subunit composition and active-site metal ions. Metal-dependent (Mo- or W-containing) FDHs from prokaryotic organisms belong to the superfamily of molybdenum enzymes and are members of the dimethylsulfoxide reductase family. In this short review, recent progress in the structural analysis of FDHs together with their potential biotechnological applications are summarized.
Collapse
Affiliation(s)
- Ami Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Midori Taketa
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| | - Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kenji Kano
- Office of Society Academia Collaboration for Innovation, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yoshiki Higuchi
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| | - Hideaki Ogata
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
8
|
Nishida S, Sumi H, Noji H, Itoh A, Kataoka K, Yamashita S, Kano K, Sowa K, Kitazumi Y, Shirai O. Influence of distal glycan mimics on direct electron transfer performance for bilirubin oxidase bioelectrocatalysts. Bioelectrochemistry 2023; 152:108413. [PMID: 37028137 DOI: 10.1016/j.bioelechem.2023.108413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Bilirubin oxidase (BOD) is a bioelectrocatalyst that reduces dioxygen (O2) to water and is capable of direct electron transfer (DET)-type bioelectrocatalysis via its electrode-active site (T1 Cu). BOD from Myrothecium verrucaria (mBOD) has been widely studied and has strong DET activity. mBOD contains two N-linked glycans (N-glycans) with N472 and N482 binding sites distal to T1 Cu. We previously reported that different N-glycan compositions affect the enzymatic orientation on the electrode by using recombinant BOD expressed in Pichia pastoris and the deglycosylation method. However, the individual function of the two N-glycans and the effects of N-glycan composition (size, structure, and non-reducing termini) on DET-type reactions are still unclear. In this study, we utilize maleimide-functionalized polyethylene glycol (MAL-PEG) as an N-glycan mimic to evaluate the aforementioned effects. Site-specific enzyme-PEG crosslinking was carried out by specific binding of maleimide to Cys residues. Recombinant BOD expressed in Escherichia coli (eBOD), which does not have a glycosylation system, was used as a benchmark to evaluate the effect. Site-directed mutagenesis of Asn residue (N472 or N482) into Cys residue is utilized to realize site-specific glycan mimic modification to the original binding site.
Collapse
|
9
|
Luan L, Ji X, Guo B, Cai J, Dong W, Huang Y, Zhang S. Bioelectrocatalysis for CO 2 reduction: recent advances and challenges to develop a sustainable system for CO 2 utilization. Biotechnol Adv 2023; 63:108098. [PMID: 36649797 DOI: 10.1016/j.biotechadv.2023.108098] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Activation and turning CO2 into value added products is a promising orientation to address environmental issues caused by CO2 emission. Currently, electrocatalysis has a potent well-established role for CO2 reduction with fast electron transfer rate; but it is challenged by the poor selectivity and low faradic efficiency. On the other side, biocatalysis, including enzymes and microbes, has been also employed for CO2 conversion to target Cn products with remarkably high selectivity; however, low solubility of CO2 in the liquid reaction phase seriously affects the catalytic efficiency. Therefore, a new synergistic role in bioelectrocatalysis for CO2 reduction is emerging thanks to its outstanding selectivity, high faradic efficiency, and desirable valuable Cn products under mild condition that are surveyed in this review. Herein, we comprehensively discuss the results already obtained for the integration craft of enzymatic-electrocatalysis and microbial-electrocatalysis technologies. In addition, the intrinsic nature of the combination is highly dependent on the electron transfer. Thus, both direct electron transfer and mediated electron transfer routes are modeled and concluded. We also explore the biocompatibility and synergistic effects of electrode materials, which emerge in combination with tuned enzymes and microbes to improve catalytic performance. The system by integrating solar energy driven photo-electrochemical technics with bio-catalysis is further discussed. We finally highlight the significant findings and perspectives that have provided strong foundations for the remarkable development of green and sustainable bioelectrocatalysis for CO2 reduction, and that offer a blueprint for Cn valuable products originate from CO2 under efficient and mild conditions.
Collapse
Affiliation(s)
- Likun Luan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Boxia Guo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinde Cai
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wanrong Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
10
|
Contaldo U, Curtil M, Pérard J, Cavazza C, Le Goff A. A Pyrene-Triazacyclononane Anchor Affords High Operational Stability for CO 2 RR by a CNT-Supported Histidine-Tagged CODH. Angew Chem Int Ed Engl 2022; 61:e202117212. [PMID: 35274429 PMCID: PMC9401053 DOI: 10.1002/anie.202117212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/10/2022]
Abstract
An original 1-acetato-4-(1-pyrenyl)-1,4,7-triazacyclononane (AcPyTACN) was synthesized for the immobilization of a His-tagged recombinant CODH from Rhodospirillum rubrum (RrCODH) on carbon-nanotube electrodes. The strong binding of the enzyme at the Ni-AcPyTACN complex affords a high current density of 4.9 mA cm-2 towards electroenzymatic CO2 reduction and a high stability of more than 6×106 TON when integrated on a gas-diffusion bioelectrode.
Collapse
Affiliation(s)
- Umberto Contaldo
- Univ. Grenoble Alpes, CNRS, DCM38000GrenobleFrance
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM38000GrenobleFrance
| | | | - Julien Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM38000GrenobleFrance
| | | | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM38000GrenobleFrance
| |
Collapse
|
11
|
contaldo U, curtil M, perard J, cavazza C, Le Goff A. A pyrene‐triazacyclononane anchor affords high operational stability for CO2RR by a CNT‐supported histidine‐tagged CODH. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- umberto contaldo
- CEA BIG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble lcbm FRANCE
| | - mathieu curtil
- Université Grenoble Alpes: Universite Grenoble Alpes DCM FRANCE
| | - Julien perard
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble lcbm FRANCE
| | - christine cavazza
- CEA BIG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble LCBM FRANCE
| | - Alan Le Goff
- Universite Grenoble Alpes/CNRS Département de Chimie Moléculaire 570 rue de la chimie 38041 Grenoble FRANCE
| |
Collapse
|
12
|
Hernández-Ibáñez N, Gomis-Berenguer A, Montiel V, Ania CO, Iniesta J. Fabrication of a biocathode for formic acid production upon the immobilization of formate dehydrogenase from Candida boidinii on a nanoporous carbon. CHEMOSPHERE 2022; 291:133117. [PMID: 34861253 DOI: 10.1016/j.chemosphere.2021.133117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The immobilization of the non-metallic enzyme formate dehydrogenase from Candida boidinii (CbFDH) into a nanoporous carbon with appropriate pore structure was explored for the bioelectrochemical conversion of CO2 to formic acid (FA). Higher FA production rates were obtained upon immobilization of CbFDH compared to the performance of the enzyme in solution, despite the lower nominal CbFDH to NADH (β-nicotinamide adenine dinucleotide reduced) cofactor ratio and the lower amount of enzyme immobilized. The co-immobilization of the enzyme and a rhodium complex as mediator in the nanoporous carbon allowed the electrochemical regeneration of the cofactor. Preparative electrosynthesis of FA carried out on biocathodes of relatively large dimensions (ca. 3 cm × 2 cm) confirmed the higher production rate of FA for the immobilized enzyme. Furthermore, the incorporation of a Nafion binder in the biocathodes did not modify the immobilization extent of the CbFDH in the carbon support. Coulombic efficiencies close to 46% were obtained for the electrosynthesis carried out at -0.8 V for the biocathodes prepared using the lowest Nafion binder content and the co-immobilized enzyme and rhodium redox mediator. Although these values may yet be improved, they confirm the feasibility of these biocathodes in larger scales (6 cm2) beyond most common electrode dimensions reported in the literature (ca. a few mm2).
Collapse
Affiliation(s)
- Naiara Hernández-Ibáñez
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain
| | | | - Vicente Montiel
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain
| | - Conchi O Ania
- CEMHTI (UPR 3079, CNRS), University of Orléans, 45071, Orléans, France.
| | - Jesús Iniesta
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain.
| |
Collapse
|
13
|
Badiani VM, Cobb SJ, Wagner A, Oliveira AR, Zacarias S, Pereira IAC, Reisner E. Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis. ACS Catal 2022; 12:1886-1897. [PMID: 35573129 PMCID: PMC9097293 DOI: 10.1021/acscatal.1c04317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/13/2021] [Indexed: 12/17/2022]
Abstract
![]()
The immobilization of redox enzymes
on electrodes enables the efficient
and selective electrocatalysis of useful reactions such as the reversible
interconversion of dihydrogen (H2) to protons (H+) and formate to carbon dioxide (CO2) with hydrogenase
(H2ase) and formate dehydrogenase (FDH), respectively.
However, their immobilization on electrodes to produce electroactive
protein films for direct electron transfer (DET) at the protein–electrode
interface is not well understood, and the reasons for their activity
loss remain vague, limiting their performance often to hour timescales.
Here, we report the immobilization of [NiFeSe]-H2ase and
[W]-FDH from Desulfovibrio vulgaris Hildenborough on a range of charged and neutral self-assembled monolayer
(SAM)-modified gold electrodes with varying hydrogen bond (H-bond)
donor capabilities. The key factors dominating the activity and stability
of the immobilized enzymes are determined using protein film voltammetry
(PFV), chronoamperometry (CA), and electrochemical quartz crystal
microbalance (E-QCM) analysis. Electrostatic and H-bonding interactions
are resolved, with electrostatic interactions responsible for enzyme
orientation while enzyme desorption is strongly limited when H-bonding
is present at the enzyme–electrode interface. Conversely, enzyme
stability is drastically reduced in the absence of H-bonding, and
desorptive enzyme loss is confirmed as the main reason for activity
decay by E-QCM during CA. This study provides insights into the possible
reasons for the reduced activity of immobilized redox enzymes and
the role of film loss, particularly H-bonding, in stabilizing bioelectrode
performance, promoting avenues for future improvements in bioelectrocatalysis.
Collapse
Affiliation(s)
- Vivek M. Badiani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Samuel J. Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Andreas Wagner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sónia Zacarias
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
14
|
Kano K. Fundamental insight into redox enzyme-based bioelectrocatalysis. Biosci Biotechnol Biochem 2022; 86:141-156. [PMID: 34755834 DOI: 10.1093/bbb/zbab197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022]
Abstract
Redox enzymes can work as efficient electrocatalysts. The coupling of redox enzymatic reactions with electrode reactions is called enzymatic bioelectrocatalysis, which imparts high reaction specificity to electrode reactions with nonspecific characteristics. The key factors required for bioelectrocatalysis are hydride ion/electron transfer characteristics and low specificity for either substrate in redox enzymes. Several theoretical features of steady-state responses are introduced to understand bioelectrocatalysis and to extend the performance of bioelectrocatalytic systems. Applications of the coupling concept to bioelectrochemical devices are also summarized with emphasis on the achievements recorded in the research group of the author.
Collapse
Affiliation(s)
- Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
15
|
Meneghello M, Léger C, Fourmond V. Electrochemical Studies of CO 2 -Reducing Metalloenzymes. Chemistry 2021; 27:17542-17553. [PMID: 34506631 DOI: 10.1002/chem.202102702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 11/07/2022]
Abstract
Only two enzymes are capable of directly reducing CO2 : CO dehydrogenase, which produces CO at a [NiFe4 S4 ] active site, and formate dehydrogenase, which produces formate at a mononuclear W or Mo active site. Both metalloenzymes are very rapid, energy-efficient and specific in terms of product. They have been connected to electrodes with two different objectives. A series of studies used protein film electrochemistry to learn about different aspects of the mechanism of these enzymes (reactivity with substrates, inhibitors…). Another series focused on taking advantage of the catalytic performance of these enzymes to build biotechnological devices, from CO2 -reducing electrodes to full photochemical devices performing artificial photosynthesis. Here, we review all these works.
Collapse
Affiliation(s)
- Marta Meneghello
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| | - Christophe Léger
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| | - Vincent Fourmond
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| |
Collapse
|
16
|
Abstract
High-temperature tolerant enzymes offer multiple advantages over enzymes from mesophilic organisms for the industrial production of sustainable chemicals due to high specific activities and stabilities towards fluctuations in pH, heat, and organic solvents. The production of molecular hydrogen (H2) is of particular interest because of the multiple uses of hydrogen in energy and chemicals applications, and the ability of hydrogenase enzymes to reduce protons to H2 at a cathode. We examined the activity of Hydrogen-Dependent CO2 Reductase (HDCR) from the thermophilic bacterium Thermoanaerobacter kivui when immobilized in a redox polymer, cobaltocene-functionalized polyallylamine (Cc-PAA), on a cathode for enzyme-mediated H2 formation from electricity. The presence of Cc-PAA increased reductive current density 340-fold when used on an electrode with HDCR at 40 °C, reaching unprecedented current densities of up to 3 mA·cm−2 with minimal overpotential and high faradaic efficiency. In contrast to other hydrogenases, T. kivui HDCR showed substantial reversibility of CO-dependent inactivation, revealing an opportunity for usage in gas mixtures containing CO, such as syngas. This study highlights the important potential of combining redox polymers with novel enzymes from thermophiles for enhanced electrosynthesis.
Collapse
|
17
|
Arena F, Giuffredi G, Perego A, Donini S, Guzmán H, Hernández S, Stancanelli E, Cosentino C, Parisini E, Di Fonzo F. Hierarchical TiN‐Supported TsFDH Nanobiocatalyst for CO
2
Reduction to Formate. ChemElectroChem 2021. [DOI: 10.1002/celc.202100480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Federica Arena
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
- Politecnico di Milano – Department of Energy Via Lambruschini 4 Milano Italy
| | - Giorgio Giuffredi
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
- Politecnico di Milano – Department of Energy Via Lambruschini 4 Milano Italy
| | - Andrea Perego
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
| | - Stefano Donini
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
| | - Hilmar Guzmán
- Politecnico di Torino – Department of Applied Science and Technology Corso Duca degli Abruzzi 24 Torino Italy
| | - Simelys Hernández
- Politecnico di Torino – Department of Applied Science and Technology Corso Duca degli Abruzzi 24 Torino Italy
| | - Eduardo Stancanelli
- Ronzoni Institute for Chemical and Biochemical Research Via Colombo 81 Milano Italy
| | - Cesare Cosentino
- Ronzoni Institute for Chemical and Biochemical Research Via Colombo 81 Milano Italy
| | - Emilio Parisini
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
| | - Fabio Di Fonzo
- Center for Nano Science and Technology – Istituto Italiano di Tecnologia (IIT@Polimi) Via Pascoli 70/3 20063 Milano Italy
| |
Collapse
|
18
|
Ruth JC, Spormann AM. Enzyme Electrochemistry for Industrial Energy Applications—A Perspective on Future Areas of Focus. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John C. Ruth
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alfred M. Spormann
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Gao K, Lu Y. Putative Extracellular Electron Transfer in Methanogenic Archaea. Front Microbiol 2021; 12:611739. [PMID: 33828536 PMCID: PMC8019784 DOI: 10.3389/fmicb.2021.611739] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
It has been suggested that a few methanogens are capable of extracellular electron transfers. For instance, Methanosarcina barkeri can directly capture electrons from the coexisting microbial cells of other species. Methanothrix harundinacea and Methanosarcina horonobensis retrieve electrons from Geobacter metallireducens via direct interspecies electron transfer (DIET). Recently, Methanobacterium, designated strain YSL, has been found to grow via DIET in the co-culture with Geobacter metallireducens. Methanosarcina acetivorans can perform anaerobic methane oxidation and respiratory growth relying on Fe(III) reduction through the extracellular electron transfer. Methanosarcina mazei is capable of electromethanogenesis under the conditions where electron-transfer mediators like H2 or formate are limited. The membrane-bound multiheme c-type cytochromes (MHC) and electrically-conductive cellular appendages have been assumed to mediate the extracellular electron transfer in bacteria like Geobacter and Shewanella species. These molecules or structures are rare but have been recently identified in a few methanogens. Here, we review the current state of knowledge for the putative extracellular electron transfers in methanogens and highlight the opportunities and challenges for future research.
Collapse
Affiliation(s)
- Kailin Gao
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Alvarez-Malmagro J, Oliveira AR, Gutiérrez-Sánchez C, Villajos B, Pereira IA, Vélez M, Pita M, De Lacey AL. Bioelectrocatalytic Activity of W-Formate Dehydrogenase Covalently Immobilized on Functionalized Gold and Graphite Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11891-11900. [PMID: 33656858 PMCID: PMC8479727 DOI: 10.1021/acsami.0c21932] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The decrease of greenhouse gases such as CO2 has become a key challenge for the human kind and the study of the electrocatalytic properties of CO2-reducing enzymes such as formate dehydrogenases is of importance for this goal. In this work, we study the covalent bonding of Desulfovibrio vulgaris Hildenborough FdhAB formate dehydrogenase to chemically modified gold and low-density graphite electrodes, using electrostatic interactions for favoring oriented immobilization of the enzyme. Electrochemical measurements show both bioelectrocatalytic oxidation of formate and reduction of CO2 by direct electron transfer (DET). Atomic force microscopy and quartz crystal microbalance characterization, as well as a comparison of direct and mediated electrocatalysis, suggest that a compact layer of formate dehydrogenase was anchored to the electrode surface with some crosslinked aggregates. Furthermore, the operational stability for CO2 electroreduction to formate by DET is shown with approximately 100% Faradaic yield.
Collapse
Affiliation(s)
- Julia Alvarez-Malmagro
- Instituto
de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, L10, 28049 Madrid, Spain
| | - Ana R. Oliveira
- Instituto
de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | | | - Beatriz Villajos
- Instituto
de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, L10, 28049 Madrid, Spain
| | - Inês A.C. Pereira
- Instituto
de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Marisela Vélez
- Instituto
de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, L10, 28049 Madrid, Spain
| | - Marcos Pita
- Instituto
de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, L10, 28049 Madrid, Spain
| | - Antonio L. De Lacey
- Instituto
de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, L10, 28049 Madrid, Spain
| |
Collapse
|
21
|
Abstract
Bioelectrocatalysis has become one of the most important research fields in electrochemistry and provided a firm base for the application of important technology in various bioelectrochemical devices, such as biosensors, biofuel cells, and biosupercapacitors. The understanding and technology of bioelectrocatalysis have greatly improved with the introduction of nanostructured electrode materials and protein-engineering methods over the last few decades. Recently, the electroenzymatic production of renewable energy resources and useful organic compounds (bioelectrosynthesis) has attracted worldwide attention. In this review, we summarize recent progress in the applications of enzymatic bioelectrocatalysis.
Collapse
|
22
|
Moon M, Park GW, Lee JP, Lee JS, Min K. Recent progress in formate dehydrogenase (FDH) as a non-photosynthetic CO2 utilizing enzyme: A short review. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
24
|
Affiliation(s)
- Cécile Cadoux
- University of GenevaSciences II Quai Ernest-Ansermet 30 1211 Geneva 4 Switzerland
| | - Ross D. Milton
- University of GenevaSciences II Quai Ernest-Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
25
|
Affiliation(s)
- Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
26
|
Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol Adv 2019; 37:107408. [DOI: 10.1016/j.biotechadv.2019.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|
27
|
Yuan M, Kummer MJ, Minteer SD. Strategies for Bioelectrochemical CO 2 Reduction. Chemistry 2019; 25:14258-14266. [PMID: 31386223 DOI: 10.1002/chem.201902880] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2019] [Indexed: 11/06/2022]
Abstract
Atmospheric CO2 is a cheap and abundant source of carbon for synthetic applications. However, the stability of CO2 makes its conversion to other carbon compounds difficult and has prompted the extensive development of CO2 reduction catalysts. Bioelectrocatalysts are generally more selective, highly efficient, can operate under mild conditions, and use electricity as the sole reducing agent. Improving the communication between an electrode and a bioelectrocatalyst remains a significant area of development. Through the examples of CO2 reduction catalyzed by electroactive enzymes and whole cells, recent advancements in this area are compared and contrasted.
Collapse
Affiliation(s)
- Mengwei Yuan
- Department of Chemistry, University of Utah, 315 S, 1400 E, Salt Lake City, UT, 84112, USA
| | - Matthew J Kummer
- Department of Chemistry, University of Utah, 315 S, 1400 E, Salt Lake City, UT, 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S, 1400 E, Salt Lake City, UT, 84112, USA
| |
Collapse
|
28
|
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.
Collapse
Affiliation(s)
- Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Hong-Qi Xia
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Lu Bai
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lu Yan
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Serge Cosnier
- Université Grenoble-Alpes , DCM UMR 5250, F-38000 Grenoble , France.,Département de Chimie Moléculaire , UMR CNRS, DCM UMR 5250, F-38000 Grenoble , France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines UMR7281 , Institut de Microbiologie de la Méditerranée, IMM , FR 3479, 31, chemin Joseph Aiguier 13402 Marseille , Cedex 20 , France
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,College of Chemistry & Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
29
|
Cordas CM, Campaniço M, Baptista R, Maia LB, Moura I, Moura JJG. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase. J Inorg Biochem 2019; 196:110694. [PMID: 31005821 DOI: 10.1016/j.jinorgbio.2019.110694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 11/19/2022]
Abstract
Formate dehydrogenase enzymes catalyse the reversible two-electron oxidation of formate to carbon dioxide. The class of metal-dependent formate dehydrogenases comprises prokaryotic enzymes holding redox-active centres and a catalytic site, containing either molybdenum or tungsten ion, that mediates the formate/carbon dioxide interconversion. The carbon dioxide reduction is of a particular interest, since it may be a route for its atmospheric mitigation with the simultaneous production of added-value products, as formate-derived compounds. Recently, the periplasmic formate dehydrogenase from Desulfovibrio desulfuricans, a molybdenum-containing enzyme, was proven to be an efficient enzyme for the CO2 reduction to formate. In this work, the immobilized formate dehydrogenase isolated from Desulfovibrio desulfuricans direct electrochemical behaviour was attained in the presence and absence of substrates and the formal potentials associated with the catalytic centre transitions were determined in non-turnover conditions. The enzyme catalytic activity towards carbon dioxide reduction was observed using direct electrochemical methods.
Collapse
Affiliation(s)
- Cristina M Cordas
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), 2829-516 Caparica, Portugal.
| | - Mariana Campaniço
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), 2829-516 Caparica, Portugal
| | - Rita Baptista
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), 2829-516 Caparica, Portugal
| | - Luísa B Maia
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), 2829-516 Caparica, Portugal
| | - Isabel Moura
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), 2829-516 Caparica, Portugal
| | - José J G Moura
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), 2829-516 Caparica, Portugal.
| |
Collapse
|
30
|
Jayathilake BS, Bhattacharya S, Vaidehi N, Narayanan SR. Efficient and Selective Electrochemically Driven Enzyme-Catalyzed Reduction of Carbon Dioxide to Formate using Formate Dehydrogenase and an Artificial Cofactor. Acc Chem Res 2019; 52:676-685. [PMID: 30741524 DOI: 10.1021/acs.accounts.8b00551] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Increasing levels of carbon dioxide in the atmosphere and the growing need for energy necessitate a shift toward reliance on renewable energy sources and the utilization of carbon dioxide. Thus, producing carbonaceous fuel by the electrochemical reduction of carbon dioxide has been very appealing. We have focused on addressing the principal challenges of poor selectivity and poor energy efficiency in the electrochemical reduction of carbon dioxide. We have demonstrated here a viable pathway for the efficient and continuous electrochemical reduction of CO2 to formate using the metal-independent enzyme type of formate dehydrogenase (FDH) derived from C andida boidinii yeast. This type of FDH is attractive because it is commercially produced. In natural metabolic processes, this type of metal-independent FDH oxidizes formate to carbon dioxide using NAD+ as a cofactor. We show that FDH can catalyze the reverse process to generate formate when the natural cofactor NADH is replaced with an artificial cofactor, the methyl viologen radical cation. The methyl viologen radical cation is generated in situ, electrochemically. Our approach relies on the special properties of methyl viologen as a "unidirectional" redox cofactor for the conversion of CO2 to formate. Methyl viologen (in the oxidized form) does not catalyze formate oxidation, while the methyl viologen radical cation is an effective cofactor for the reduction of carbon dioxide. Thus, although the thermodynamic driving force is favorable for the oxidized form of methyl viologen to oxidize formate to carbon dioxide, the kinetic factors are not favorable. Only the reverse reaction of carbon dioxide reduction to formate is kinetically viable with the cofactor, methyl viologen radical cation. Binding free energy calculated from atomistic molecular dynamics (MD) simulations consolidate our understanding of these special binding properties of the methyl viologen radical cation and its ability to facilitate the two-electron reduction of carbon dioxide to formate in metal-independent FDH. By carrying out the reactions in a novel three-compartment cell, we have demonstrated the continuous production of formate at high energy efficiency and yield. This cell configuration uses judiciously selected ion-exchange membranes to separate the reaction compartments to preserve the yields of the methyl viologen radical cation and formate. By the electroregeneration of the methyl viologen radical cation at -0.44 V versus the normal hydrogen electrode, we could produce formate at 20 mV negative to the reversible electrode potential for carbon dioxide reduction to formate. Our results are in sharp contrast to the large overpotentials of -800 to -1000 mV required on metal catalysts, vindicating the selectivity and kinetic facility provided by FDH. Formate yields as high as 97% ± 1% could be realized by avoiding the adventitious reoxidation of the methyl viologen radical cation by molecular oxygen. We anticipate that the insights from the electrochemical studies and the MD simulations to be useful in redesigning the metal-independent FDH and alternate artificial cofactors to achieve even higher rates of conversion.
Collapse
Affiliation(s)
- Buddhinie S. Jayathilake
- Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, United States
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, United States
| | - S. R. Narayanan
- Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
31
|
Sokol KP, Robinson WE, Oliveira AR, Warnan J, Nowaczyk MM, Ruff A, Pereira IAC, Reisner E. Photoreduction of CO 2 with a Formate Dehydrogenase Driven by Photosystem II Using a Semi-artificial Z-Scheme Architecture. J Am Chem Soc 2018; 140:16418-16422. [PMID: 30452863 PMCID: PMC6307851 DOI: 10.1021/jacs.8b10247] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Solar-driven
coupling of water oxidation with CO2 reduction
sustains life on our planet and is of high priority in contemporary
energy research. Here, we report a photoelectrochemical
tandem device that performs photocatalytic reduction of CO2 to formate. We employ a semi-artificial design, which wires
a W-dependent formate dehydrogenase (FDH) cathode to a photoanode
containing the photosynthetic water oxidation enzyme, Photosystem
II, via a synthetic dye with complementary light absorption. From
a biological perspective, the system achieves a metabolically inaccessible
pathway of light-driven CO2 fixation to formate. From a
synthetic point of view, it represents a proof-of-principle system
utilizing precious-metal-free catalysts for selective CO2-to-formate conversion using water as an electron donor. This hybrid
platform demonstrates the translatability and versatility of coupling
abiotic and biotic components to create challenging models for solar
fuel and chemical synthesis.
Collapse
Affiliation(s)
- Katarzyna P Sokol
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - William E Robinson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Ana R Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA) , Universidade NOVA de Lisboa , Av. da República , 2780-157 Oeiras , Portugal
| | - Julien Warnan
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology & Biotechnology , Ruhr-Universität Bochum , Universitätsstraße 150 , 44780 Bochum , Germany
| | - Adrian Ruff
- Analytical Chemistry - Center for Electrochemical Sciences, Faculty of Chemistry and Biochemistry , Ruhr-Universität Bochum , Universitätsstraße 150 , 44780 Bochum , Germany
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA) , Universidade NOVA de Lisboa , Av. da República , 2780-157 Oeiras , Portugal
| | - Erwin Reisner
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
32
|
Xia HQ, Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K. Carbon-nanotube-caged microbial electrodes for bioelectrocatalysis. Enzyme Microb Technol 2018; 117:41-44. [DOI: 10.1016/j.enzmictec.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 11/29/2022]
|
33
|
Xia HQ, Kitazumi Y, Shirai O, Kano K. Direct Electron Transfer-type Bioelectrocatalysis of Peroxidase at Mesoporous Carbon Electrodes and Its Application for Glucose Determination Based on Bienzyme System. ANAL SCI 2018; 33:839-844. [PMID: 28690263 DOI: 10.2116/analsci.33.839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Non-catalytic direct electron transfer (DET) signal of Compound I of horseradish peroxidase (POD) was first detected at 0.7 V on POD/carbon nanotube mixture-modified electrodes. Excellent performance of DET-type bioelectrocatalysis was achieved with POD immobilized with glutaraldehyde on Ketjen Black (KB)-modified electrodes for H2O2 reduction with an onset potential of 0.65 V (vs. Ag | AgCl | sat. KCl) without any electrode surface modification. The POD-immobilized KB electrode was found to be suitable for detecting H2O2 with a low detection limit (0.1 μM at S/N = 3) at -0.1 V. By co-immobilizing glucose oxidase (GOD) and POD on the KB-modified electrode, a bienzyme electrode was constructed to couple the oxidase reaction of GOD with the DET-type bioelectrocatalytic reduction of H2O2 by POD. The amperometric detection of glucose was performed with a high sensitivity (0.33 ± 0.01 μA cm-2 μM-1) and a low detection limit (2 μM at S/N = 3).
Collapse
Affiliation(s)
- Hong-Qi Xia
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki Kitazumi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
34
|
|
35
|
Hu B, Harris DF, Dean DR, Liu TL, Yang ZY, Seefeldt LC. Electrocatalytic CO 2 reduction catalyzed by nitrogenase MoFe and FeFe proteins. Bioelectrochemistry 2017; 120:104-109. [PMID: 29223886 DOI: 10.1016/j.bioelechem.2017.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/26/2022]
Abstract
Nitrogenases catalyze biological dinitrogen (N2) reduction to ammonia (NH3), and also reduce a number of non-physiological substrates, including carbon dioxide (CO2) to formate (HCOO-) and methane (CH4). Three versions of nitrogenase are known (Mo-, V-, and Fe-nitrogenase), each showing different reactivities towards various substrates. Normally, electrons for substrate reduction are delivered by the Fe protein component of nitrogenase, with energy coming from the hydrolysis of 2 ATP to 2 ADP+2 Pi for each electron transferred. Recently, it has been demonstrated that energy and electrons can be delivered from an electrode to the catalytic nitrogenase MoFe-protein without the need for Fe protein or ATP hydrolysis. Here, it is demonstrated that both the MoFe- and FeFe-protein can be immobilized as a polymer layer on an electrode and that electron transfer mediated by cobaltocene can drive CO2 reduction to formate in this system. It was also found that the FeFe-protein diverts a greater percentage of electrons to CO2 reduction versus proton reduction compared to the MoFe-protein. Quantification of electron flow to products exhibited Faradaic efficiencies of CO2 conversion to formate of 9% for MoFe protein and 32% for FeFe-protein, with the remaining electrons going to proton reduction to make H2.
Collapse
Affiliation(s)
- Bo Hu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Derek F Harris
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA.
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
36
|
Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K. Direct electron transfer-type four-way bioelectrocatalysis of CO2/formate and NAD+/NADH redox couples by tungsten-containing formate dehydrogenase adsorbed on gold nanoparticle-embedded mesoporous carbon electrodes modified with 4-mercaptopyridine. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
37
|
Hossain MN, Wen J, Konda SK, Govindhan M, Chen A. Electrochemical and FTIR spectroscopic study of CO 2 reduction at a nanostructured Cu/reduced graphene oxide thin film. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K. High-Power Formate/Dioxygen Biofuel Cell Based on Mediated Electron Transfer Type Bioelectrocatalysis. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01918] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kento Sakai
- Division of Applied
Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yuki Kitazumi
- Division of Applied
Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Osamu Shirai
- Division of Applied
Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazuyoshi Takagi
- Department of Applied Chemistry, College
of Life Science, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Kenji Kano
- Division of Applied
Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|