1
|
Yaylali FV, Ozel H, Udum YA, Toppare L, Soylemez S, Gunbas G. ProTOT: Synthesis of the missing member of the 3,4-chalcogen substituted bridged thiophenes and its utilization in donor-acceptor polymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Jiramitmongkon K, Chotsuwan C, Asawapirom U, Hirunsit P. Cyclopentadithiophene and Diketo-pyrrolo-pyrrole fused rigid copolymer for high optical contrast electrochromic polymer. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1989-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
Yue H, Kong L, Wang B, Yuan Q, Zhang Y, Du H, Dong Y, Zhao J. Synthesis and Characterization of Novel D-A Type Neutral Blue Electrochromic Polymers Containing Pyrrole[3-c]Pyrrole-1,4-Diketone as the Acceptor Units and the Aromatics Donor Units with Different Planar Structures. Polymers (Basel) 2019; 11:E2023. [PMID: 31817708 PMCID: PMC6960932 DOI: 10.3390/polym11122023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022] Open
Abstract
Three soluble conjugated polymers, named BEDPP, FLDPP, and CADPP, were prepared through the Suzuki polymerized reaction, and employed benzene (BE), fluorene (FL), and carbazole (CA) as the donor units, respectively. The electron-deficient molecule 2,5-bis-(2-octyldodecyl)-3,6-bis-(5-bromo-thiophene)-pyrrole[3-c]pyrrole-1,4-diketone(DPP)was introduced and used as the acceptor unit. The properties of these three copolymers were studied by a series of detailed characterization analysis, including X-ray photoelectron spectroscopy (XPS), colorimetry, electrochemical measurements, spectroelectrochemistry, kinetics, quantitative calculation, and thermogravimetric (TG) analysis, etc. The results revealed that BEDPP displayed a blue color in the neutral state and a light brown color in the oxidized state, FLDPP exhibited a cyan color in the neutral state and a gray color in the oxidized state, while CADPP displayed pure blue color in the neutral state and a light gray color in the oxidized state. All these polymers possess narrow optical band gaps lower than 1.80 eV and satisfactory thermal stability. The kinetic characterization showed that the optical contrasts (ΔT%) in the near-infrared region were superior to the visible region. The optical contrasts of BEDPP, FLDPP, and CADPP are 41.32%, 42.39%, and 45.95% in the near-infrared region, respectively, which made them a good application prospect in the near-infrared region. Amid the three polymers, CADPP has the highest coloration efficiency (around about 288 cm2·C-1) and fast switching times (0.77 s in the coloring process and 0.52 s in the bleaching process) in the visible region, and the comprehensive performance of CADPP can be comparable to that of the reported D-A (Donor-Acceptor) type blue color polymers. In general, based on the good performances and the stable neutral blue color, the three polymers had profound theoretical significance for the development of electrochromic material and the completion of the RGB (Red, Green, Blue) color space.
Collapse
Affiliation(s)
- Haoguo Yue
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Lingqian Kong
- Department of chemistry, Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Bo Wang
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Qing Yuan
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Yan Zhang
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Hongmei Du
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Yunyun Dong
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Jinsheng Zhao
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
4
|
Li W, Luo F, Zhang L, Yan S, Zhao R, Ren N, Wu Y, Chen Y, Dong Y, Ouyang M, Zhang C. Synthesis, electrochemistry, and electrochromic properties of branched thiophene polymers with different conjugation lengths. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Weijun Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Feifei Luo
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ling Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Shuanma Yan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ruiyang Zhao
- College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Ning Ren
- Zhejiang Chaowei Chuangyuan Industrial Co. LTD South Rd. No. 18 XingChang 313000 People's Republic of China
| | - Yizhao Wu
- Zhejiang Chaowei Chuangyuan Industrial Co. LTD South Rd. No. 18 XingChang 313000 People's Republic of China
| | - Yuliang Chen
- Zhejiang Chaowei Chuangyuan Industrial Co. LTD South Rd. No. 18 XingChang 313000 People's Republic of China
| | - Yujie Dong
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Mi Ouyang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Cheng Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
5
|
Drewniak A, Tomczyk MD, Knop K, Walczak KZ, Ledwon P. Multiple Redox States and Multielectrochromism of Donor–Acceptor Conjugated Polymers with Aromatic Diimide Pendant Groups. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01069] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anna Drewniak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mateusz D. Tomczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Karol Knop
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Krzysztof Z. Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, ul. Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
6
|
Bini K, Murto P, Elmas S, Andersson MR, Wang E. Broad spectrum absorption and low-voltage electrochromic operation from indacenodithieno[3,2-b]thiophene-based copolymers. Polym Chem 2019. [DOI: 10.1039/c8py01787e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The design and application of IDTT-based conjugated polymers for red-to-transparent and black-to-transparent electrochromic switching at low voltages are reported.
Collapse
Affiliation(s)
- Kim Bini
- Department of Chemistry and Chemical Engineering/Applied Chemistry
- Chalmers University of Technology
- Göteborg
- Sweden
| | - Petri Murto
- Department of Chemistry and Chemical Engineering/Applied Chemistry
- Chalmers University of Technology
- Göteborg
- Sweden
- Flinders Institute for Nanoscale Science and Technology
| | - Sait Elmas
- Flinders Institute for Nanoscale Science and Technology
- Flinders University
- Adelaide
- Australia
| | - Mats R. Andersson
- Flinders Institute for Nanoscale Science and Technology
- Flinders University
- Adelaide
- Australia
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering/Applied Chemistry
- Chalmers University of Technology
- Göteborg
- Sweden
| |
Collapse
|
7
|
Chen Y, Lu Q, Gao L, Zhang X, Yang C, Cai W, Pang G, Niu H, Wang W, Hou Y, Zhang Y. Synthesis and optoelectronic properties of novel alternate copolymers based on diketopyrrolopyrrole and triarylamine units spaced by flexible chain. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Li Y, Zhou Y, Jia X, Chao D. Synthesis and characterization of a dual electrochromic and electrofluorochromic crosslinked polymer. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Zhang Y, Kong L, Ju X, Du H, Zhao J, Xie Y. Synthesis and characterization of novel donor–acceptor type neutral green electrochromic polymers containing an indolo[3,2-b]carbazole donor and diketopyrrolopyrrole acceptor. RSC Adv 2018; 8:21252-21264. [PMID: 35539948 PMCID: PMC9080953 DOI: 10.1039/c8ra03552k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/04/2018] [Indexed: 12/02/2022] Open
Abstract
Indolocarbazole bearing donor–acceptor type polymers have rarely been reported in the electrochromic field despite them having considerable development in the applications of organic photoelectric devices. In this paper, two novel soluble electrochromic polymers, namely PDTCZ-1 and PDTCZ-2, were prepared by chemical polymerization including indolo[3,2-b]carbazole (IC) units as the donor, diketopyrrolopyrrole (DPP) units as the acceptor and bithiophene units as the bridging group. Through diverse characterization techniques such as cyclic voltammetry (CV), scanning electron microscopy (SEM), UV-vis spectroscopy and thermogravimetric analysis (TGA), it was found that PDTCZ-1 and PDTCZ-2 exhibited saturated green in the neutral state and pale green in the oxidized state with optical band gaps of 1.44 eV and 1.39 eV, respectively, as well as demonstrating fast switching speed, satisfactory coloration efficiency and favorable thermal stability. In addition, the proportion of donors to acceptors definitely exerted an influence on the electrochromic properties of the polymers. As the thiophene/IC/DPP ratio changed from 4/3/1 (PDTCZ-1) to 5/4/1 (PDTCZ-2), meaning an increase of the donor ratio, the polymer showed a reduced onset oxidation potential, decreased optical band gap and different dynamic parameters. The positive results suggest that PDTCZ-1 and PDTCZ-2 could be promising candidates as neutral green electrochromic materials and deserve more attention and penetrating research. Two novel neutral green D–A type conjugated polymers were synthesized, illustrating satisfactory electrochromic properties, such as low band gaps, desirable color switches, excellent solubility and favorable thermal stability.![]()
Collapse
Affiliation(s)
- Yan Zhang
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- Liaocheng University
- Liaocheng
- P. R. China
| | - Lingqian Kong
- Dongchang College
- Liaocheng University
- Liaocheng
- P. R. China
| | - Xiuping Ju
- Dongchang College
- Liaocheng University
- Liaocheng
- P. R. China
| | - Hongmei Du
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- Liaocheng University
- Liaocheng
- P. R. China
| | - Jinsheng Zhao
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- Liaocheng University
- Liaocheng
- P. R. China
| | - Yu Xie
- College of Environment and Chemical Engineering
- Nanchang Hangkong University
- Nanchang 330063
- PR China
| |
Collapse
|