1
|
Li W, Yin D, Li P, Zhao X, Hao S. Iridium single-atoms anchored on a TiO 2 support as an efficient catalyst for the hydrogen evolution reaction. Phys Chem Chem Phys 2024; 26:19822-19830. [PMID: 38988227 DOI: 10.1039/d4cp01878h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Single-atom catalysts (SACs) play a vital role in the hydrogen evolution reaction (HER) owing to the highly desirable atom efficiency and the minimal amount of precious metals. Herein, we use TiO2 nanosheets to anchor stable atomically dispersed iridium (Ir) to be used as a catalyst (Ir@TiO2) for the HER. The atomic dispersion of Ir on the TiO2 substrate is confirmed by aberration-corrected scanning transmission electron microscopy and it is anchored by numerous surface functional groups on abundantly exposed basal planes in TiO2. In acidic media, the Ir@TiO2 catalyst (1.35 wt% Ir) shows a low overpotential (41 mV at 10 mA cm-2), a small Tafel slope of 42 mV dec-1, and a decent durability for 1000 cycles of the HER with the polarization curve having only a 1 mV shift, which are comparable with those of a commercial Pt/C catalyst with 20 wt% Pt. This work paves a way to design Ir atomically anchored catalysts with low cost and high activity.
Collapse
Affiliation(s)
- Wenxuan Li
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Dashu Yin
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Peng Li
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Xinhua Zhao
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Shengcai Hao
- Beijing Academy of Science and Technology, Beijing 100089, China.
- College of Materials Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
2
|
Wang C, Yang F, Feng L. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction. NANOSCALE HORIZONS 2023; 8:1174-1193. [PMID: 37434582 DOI: 10.1039/d3nh00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is considered a promising technology for green hydrogen production, and iridium (Ir)-based catalysts are the best materials for anodic oxygen evolution reactions (OER) owing to their high stability and anti-corrosion ability in a strong acid electrolyte. The properties of Ir-based nanocatalysts can be tuned by rational dimension engineering, which has received intensive attention recently for catalysis ability boosting. To achieve a comprehensive understanding of the structural and catalysis performance, herein, an overview of the recent progress was provided for Ir-based catalysts with different dimensions for the acidic OER. The promotional effect was first presented in terms of the nano-size effect, synergistic effect, and electronic effect based on the dimensional effect, then the latest progress of Ir-based catalysts classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) catalysts was introduced in detail; and the practical application of some typical examples in the real PEM water electrolyzers (PEMWE) was also presented. Finally, the problems and challenges faced by current dimensionally engineered Ir-based catalysts in acidic electrolytes were discussed. It is concluded that the increased surface area and catalytic active sites can be realized by dimensional engineering strategies, while the controllable synthesis of different dimensional structured catalysts is still a great challenge, and the correlation between structure and performance, especially for the structural evolution during the electrochemical operation process, should be probed in depth. Hopefully, this effort could help understand the progress of dimensional engineering of Ir-based catalysts in OER catalysis and contribute to the design and preparation of novel efficient Ir-based catalysts.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
3
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
4
|
Wang S, Hu W, Ru Y, Shi Y, Guo X, Sun Y, Pang H. Synthesis Strategies and Electrochemical Research Progress of Nano/Microscale Metal–Organic Frameworks. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shixian Wang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Wenhui Hu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yue Ru
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| |
Collapse
|
5
|
Chen D, Zhu J, Pu Z, Mu S. Anion Modulation of Pt-Group Metals and Electrocatalysis Applications. Chemistry 2021; 27:12257-12271. [PMID: 34129268 DOI: 10.1002/chem.202101645] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/14/2022]
Abstract
Pt-group metal (PGM) electrocatalysts with unique electronic structures and irreplaceable comprehensive properties play crucial roles in electrocatalysis. Anion engineering can create a series of PGM compounds (such as RuP2 , IrP2 , PtP2 , RuB2 , Ru2 B3 , RuS2 , etc.) that provide a promising prospect for improving the electrocatalytic performance and use of Pt-group noble metals. This review seeks the electrochemical activity origin of anion-modulated PGM compounds, and systematically analyzes and summarizes their synthetic strategies and energy-relevant applications in electrocatalysis. Orientation towards the sustainable development of nonfossil resources has stimulated a blossoming interest in the design of advanced electrocatalysts for clean energy conversion. The anion-modulated strategy for Pt-group metals (PGMs) by means of anion engineering possesses high flexibility to regulate the electronic structure, providing a promising prospect for constructing electrocatalysts with superior activity and stability to satisfy a future green electrochemical energy conversion system. Based on the previous work of our group and others, this review summarizes the up-to-date progress on anion-modulated PGM compounds (such as RuP2 , IrP2 , PtP2 , RuB2 , Ru2 B3 , RuS2 , etc.) in energy-related electrocatalysis from the origin of their activity and synthetic strategies to electrochemical applications including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), N2 reduction reaction (NRR), and CO2 reduction reaction (CO2 RR). At the end, the key problems, countermeasures and future development orientations of anion-modulated PGM compounds toward electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zonghua Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
6
|
Peng Y, Liu Q, Lu B, He T, Nichols F, Hu X, Huang T, Huang G, Guzman L, Ping Y, Chen S. Organically Capped Iridium Nanoparticles as High-Performance Bifunctional Electrocatalysts for Full Water Splitting in Both Acidic and Alkaline Media: Impacts of Metal–Ligand Interfacial Interactions. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03747] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Peng
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Ting He
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Forrest Nichols
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Xiao Hu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Tiffanie Huang
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Grace Huang
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Lizette Guzman
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Yuan Ping
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
7
|
Scremin J, Joviano Dos Santos IV, Hughes JP, García-Miranda Ferrari A, Valderrama E, Zheng W, Zhong X, Zhao X, Sartori EJR, Crapnell RD, Rowley-Neale SJ, Banks CE. Platinum nanoparticle decorated vertically aligned graphene screen-printed electrodes: electrochemical characterisation and exploration towards the hydrogen evolution reaction. NANOSCALE 2020; 12:18214-18224. [PMID: 32856624 DOI: 10.1039/d0nr04336b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present the fabrication of platinum (Pt0) nanoparticle (ca. 3 nm average diameter) decorated vertically aligned graphene (VG) screen-printed electrodes (Pt/VG-SPE) and explore their physicochemical characteristics and electrocatalytic activity towards the hydrogen evolution reaction (HER) in acidic media (0.5 M H2SO4). The Pt/VG-SPEs exhibit remarkable HER activity with an overpotential (recorded at -10 mA cm-2) and Tafel value of 47 mV (vs. RHE) and 27 mV dec-1. These values demonstrate the Pt/VG-SPEs as significantly more electrocatalytic than a bare/unmodified VG-SPE (789 mV (vs. RHE) and 97 mV dec-1). The uniform coverage of Pt0 nanoparticles (ca. 3 nm) upon the VG-SPE support results in a low loading of Pt0 nanoparticles (ca. 4 μg cm-2), yet yields comparable HER activity to optimal Pt based catalysts reported in the literature, with the advantages of being comparatively cheap, highly reproducible and tailorable platforms for HER catalysis. In order to test any potential dissolution of Pt0 from the Pt/VG-SPE surface, which is a key consideration for any HER catalyst, we additively manufactured (AM) a bespoke electrochemical flow cell that allowed for the electrolyte to be collected at regular intervals and analysed via inductively coupled plasma optical emission spectroscopy (ICP-OES). The AM electrochemical cell can be rapidly tailored to a plethora of geometries making it compatible with any size/shape of electrochemical platform. This work presents a novel and highly competitive HER platform and a novel AM technique for exploring the extent of Pt0 nanoparticle dissolution upon the electrode surface, making it an essential study for those seeking to test the stability/catalyst discharge of their given electrochemical platforms.
Collapse
Affiliation(s)
- Jessica Scremin
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Peng Z, Liu J, Hu B, Yang Y, Guo Y, Li B, Li L, Zhang Z, Cui B, He L, Du M. Surface Engineering on Nickel-Ruthenium Nanoalloys Attached Defective Carbon Sites as Superior Bifunctional Electrocatalysts for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13842-13851. [PMID: 32129985 DOI: 10.1021/acsami.9b21827] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, we report a novel catalyst of nickel-ruthenium alloy nanoparticles (NPs) homogeneously enriched in the wall of multiwalled carbon nanotubes (denoted as NiRu@MWCNTs) via a facile plasma reduction method. The NiRu@MWCNTs exhibits remarkable electrocatalytic activity and stability for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The required overpotentials to drive a current density of 10 mA cm-2 (η10) over NiRu@MWCNTs are only 14 and 240 mV, corresponding to Tafel slopes of 32 and 55 mV dec-1 for the HER and OER in alkaline medium, respectively. Furthermore, the NiRu@MWCNTs electrolyzer shows low η10 of 330, 380, and 280 mV in acidic, neutral, and alkaline media, respectively. Density functional theory (DFT) calculations and experimental results reveal that the NiRu alloy NPs attached to the defective and nondefective carbon are the key active sites for the HER and OER, respectively, thus resulting in superior isolated synergistic bifunctional active sites for overall water splitting. Our work provides a promising strategy for efficient synthesis of robust catalysts with specific bifunctional active sites for overall water splitting in a wide pH range, along with deep insight into the catalytic mechanism.
Collapse
Affiliation(s)
- Zhikun Peng
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Jiameng Liu
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Bin Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yongpeng Yang
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Yuqi Guo
- Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
- People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
- People's Hospital of Henan University, Zhengzhou, Henan 450003, China
- Henan International Joint Laboratory for Gynecological Oncology and Nanomedicine, Zhengzhou, Henan 450003, China
| | - Baojun Li
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Li Li
- Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
- People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
- People's Hospital of Henan University, Zhengzhou, Henan 450003, China
- Henan International Joint Laboratory for Gynecological Oncology and Nanomedicine, Zhengzhou, Henan 450003, China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Bingbing Cui
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Miao Du
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
9
|
Ding X, Yang T, Wei W, Wang Y, Xu K, Zhu Z, Zhao H, Yu T, Zhang D. An in situ grown lanthanum sulfide/molybdenum sulfide hybrid catalyst for electrochemical hydrogen evolution. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00425a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An La2S3–MoS2 catalyst with expanded interlayer spacing and engineered nano-interfaces was facilely synthesized, demonstrating enhanced catalytic activity for electrochemical hydrogen evolution.
Collapse
Affiliation(s)
- Xinran Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Tao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Wenxian Wei
- Testing Center
- Yangzhou University
- Yangzhou 225009
- China
| | - Yihui Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Kai Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Zizheng Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Hong Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Tingting Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Dongen Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
- Jiangsu Ocean University
- Lianyungang 222005
- China
| |
Collapse
|
10
|
Hughes JP, Blanco FD, Banks CE, Rowley-Neale SJ. Mass-producible 2D-WS 2 bulk modified screen printed electrodes towards the hydrogen evolution reaction. RSC Adv 2019; 9:25003-25011. [PMID: 35528637 PMCID: PMC9069938 DOI: 10.1039/c9ra05342e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/01/2019] [Indexed: 11/21/2022] Open
Abstract
A screen-printable ink that contained varying percentage mass incorporations of two dimensional tungsten disulphide (2D-WS2) was produced and utilized to fabricate bespoke printed electrodes (2D-WS2-SPEs). These WS2-SPEs were then rigorously tested towards the Hydrogen Evolution Reaction (HER) within an acidic media. The mass incorporation of 2D-WS2 into the 2D-WS2-SPEs was found to critically affect the observed HER catalysis with the larger mass incorporations resulting in more beneficial catalysis. The optimal (largest possible mass of 2D-WS2 incorporation) was the 2D-WS2-SPE40%, which displayed a HER onset potential, Tafel slope value and Turn over Frequency (ToF) of -214 mV (vs. RHE), 51.1 mV dec-1 and 2.20 , respectively. These values significantly exceeded the HER catalysis of a bare/unmodified SPE, which had a HER onset and Tafel slope value of -459 mV (vs. RHE) and 118 mV dec-1, respectively. Clearly, indicating a strong electrocatalytic response from the 2D-WS2-SPEs. An investigation of the signal stability of the 2D-WS2-SPEs was conducted by performing 1000 repeat cyclic voltammograms (CVs) using a 2D-WS2-SPE10% as a representative example. The 2D-WS2-SPE10% displayed remarkable stability with no variance in the HER onset potential of ca. -268 mV (vs. RHE) and a 44.4% increase in the achievable current over the duration of the 1000 CVs. The technique utilized to fabricate these 2D-WS2-SPEs can be implemented for a plethora of different materials in order to produce large numbers of uniform and highly reproducible electrodes with bespoke electrochemical signal outputs.
Collapse
Affiliation(s)
- Jack P Hughes
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK www.craigbanksresearch.com +44(0)1612476831 +44(0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Felipe D Blanco
- University of São Paulo Prof. Lineu Prestes Avenue, Butantã São Paulo 05508-000 SP Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK www.craigbanksresearch.com +44(0)1612476831 +44(0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Samuel J Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK www.craigbanksresearch.com +44(0)1612476831 +44(0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| |
Collapse
|
11
|
Li P, Zhao R, Chen H, Wang H, Wei P, Huang H, Liu Q, Li T, Shi X, Zhang Y, Liu M, Sun X. Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805103. [PMID: 30773809 DOI: 10.1002/smll.201805103] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Indexed: 05/06/2023]
Abstract
Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water-oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild-pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild-pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions.
Collapse
Affiliation(s)
- Peipei Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Runbo Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hongyu Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Huanbo Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Peipei Wei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hong Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qian Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xifeng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| |
Collapse
|