1
|
Liu Y, Zhang L, Tan Z, Sun W, Zhang L, Qiao ZA. Molecular-level Modulation of N, S-Co-Doped Mesoporous Carbon Nanospheres for Selective Aqueous Catalytic Oxidation of Ethylbenzene. Angew Chem Int Ed Engl 2025; 64:e202419438. [PMID: 39592406 DOI: 10.1002/anie.202419438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/28/2024]
Abstract
Selective oxidation of aromatic alkanes into high value-added products through benzylic C-H bond activation is one of the main reactions in chemical industry. On account of the constantly increasing demand for mass production, efficient, eco-friendly and sustainable catalysts are urgently needed. Herein, we describe a facile and versatile emulsion-assisted interface self-assembly strategy towards molecular-level fabrication of co-doped mesoporous carbon nanospheres with controllable active N and S species. The method enables a high degree of control over nanoparticle sizes, mesoporous nanostructures, contents of heteroatoms and the chemical composition. The optimized catalyst exhibits high catalytic performance of 97 % ethylbenzene conversion and 98 % selectivity to acetophenone. Density functional theory simulations reveal that N, S-co-doping leads to the redistribution of charge and spin densities, introducing more active carbon atoms and realizing aerobic oxidation of ethylbenzene efficiently. This work presents a general strategy for molecular-level design of carbon-based catalysts, and also provides new insight into the influence of heteroatom-doping on catalytic properties.
Collapse
Affiliation(s)
- Yumeng Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Liangliang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhengwen Tan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Ling Zhang
- State Key Laboratory of Supramolecular Structure and Materials, C, ollege of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
2
|
Cardoso ESF, Fortunato GV, Rodrigues CD, Lanza MRV, Maia G. Exploring the Potential of Heteroatom-Doped Graphene Nanoribbons as a Catalyst for Oxygen Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2831. [PMID: 37947677 PMCID: PMC10650208 DOI: 10.3390/nano13212831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 11/12/2023]
Abstract
In this study, we created a series of N, S, and P-doped and co-doped carbon catalysts using a single graphene nanoribbon (GNR) matrix and thoroughly evaluated the impact of doping on ORR activity and selectivity in acidic, neutral, and alkaline conditions. The results obtained showed no significant changes in the GNR structure after the doping process, though changes were observed in the surface chemistry in view of the heteroatom insertion and oxygen depletion. Of all the dopants investigated, nitrogen (mainly in the form of pyrrolic-N and graphitic-N) was the most easily inserted and detected in the carbon matrix. The electrochemical analyses conducted showed that doping impacted the performance of the catalyst in ORR through changes in the chemical composition of the catalyst, as well as in the double-layer capacitance and electrochemically accessible surface area. In terms of selectivity, GNR doped with phosphorus and sulfur favored the 2e- ORR pathway, while nitrogen favored the 4e- ORR pathway. These findings can provide useful insights into the design of more efficient and versatile catalytic materials for ORR in different electrolyte solutions, based on functionalized carbon.
Collapse
Grants
- grants #465571/2014-0, #302874/2017-8, #427452/2018-0, #303351/2018-7, #405742/2018-5, #380886/2020-0, #303943/2021-1, #302561/2022-6, # 151161/2023-2 National Council for Scientific and Technological Development
- grants #71/020.168/2021, #71/027.195/2022 and #71/039.199/2022 Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul
- PrInt grant #88881.311799/2018-01, PNPD-CAPES, and CAPES - Finance Code 001 Coordenação de Aperfeicoamento de Pessoal de Nível Superior
- grants 2014/50945-4, 2017/10118-0, #2019/04421-7, and #2023/01425-7 São Paulo Research Foundation
- grant # 2023/10772-2 São Paulo Research Foundation
Collapse
Affiliation(s)
- Eduardo S. F. Cardoso
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller 1555, Campo Grande 79074-460, MS, Brazil;
| | - Guilherme V. Fortunato
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos 13566-590, SP, Brazil; (G.V.F.); (M.R.V.L.)
| | - Clauber D. Rodrigues
- Campus Glória de Dourados, State University of Mato Grosso do Sul, Rua Rogério Luis Rodrigues s/n, Glória de Dourados 79730-000, MS, Brazil;
| | - Marcos R. V. Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos 13566-590, SP, Brazil; (G.V.F.); (M.R.V.L.)
| | - Gilberto Maia
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller 1555, Campo Grande 79074-460, MS, Brazil;
| |
Collapse
|
3
|
Denis PA. Heteroatom Codoped Graphene: The Importance of Nitrogen. ACS OMEGA 2022; 7:45935-45961. [PMID: 36570263 PMCID: PMC9773818 DOI: 10.1021/acsomega.2c06010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Although graphene has exceptional properties, they are not enough to solve the extensive list of pressing world problems. The substitutional doping of graphene using heteroatoms is one of the preferred methods to adjust the physicochemical properties of graphene. Much effort has been made to dope graphene using a single dopant. However, in recent years, substantial efforts have been made to dope graphene using two or more dopants. This review summarizes all the hard work done to synthesize, characterize, and develop new technologies using codoped, tridoped, and quaternary doped graphene. First, I discuss a simple question that has a complicated answer: When can an atom be considered a dopant? Then, I briefly discuss the single atom doped graphene as a starting point for this review's primary objective: codoped or dual-doped graphene. I extend the discussion to include tridoped and quaternary doped graphene. I review most of the systems that have been synthesized or studied theoretically and the areas in which they have been used to develop new technologies. Finally, I discuss the challenges and prospects that will shape the future of this fascinating field. It will be shown that most of the graphene systems that have been reported involve the use of nitrogen, and much effort is needed to develop codoped graphene systems that do not rely on the stabilizing effects of nitrogen. I expect that this review will contribute to introducing more researchers to this fascinating field and enlarge the list of codoped graphene systems that have been synthesized.
Collapse
|
4
|
Pan M, Li J, Pan B. Identifying the Active Sites of Heteroatom Graphene as a Conductive Membrane for the Electrochemical Filtration of Organic Contaminants. Int J Mol Sci 2022; 23:ijms232314967. [PMID: 36499294 PMCID: PMC9739727 DOI: 10.3390/ijms232314967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The dopants of sulfur, nitrogen, or both, serving as the active sites, into the graphitic framework of graphene is an efficient strategy to improve the electrochemical performance of electrochemical membrane filtration. However, the covalent bonds between the doped atoms and the substrate that form different functional groups have a significant role in the specific activity for pollutant degradation. Herein, we found that the singly doped heteroatom graphene (NG and SG) achieved superior removal efficiency of pollutants as compared with that of the double doped heteroatom graphene (SNG). Mechanism studies showed that the doped N of NG presented as graphitic N and substantially increased electron transfer, whereas the doped S of SG posed as -C-SOx-C- provided more adsorption sites to improve electrochemical performance. However, in the case of SNG, the co-doped S and N cannot form the efficient graphitic N and -C-SOx-C- for electrochemical degradation, resulting in a low degradation efficiency. Through the fundamental insights into the bonding of the doped heteroatom on graphene, this work furnishes further directives for the design of desirable heteroatom graphene for membrane filtration.
Collapse
|
5
|
Fortunato GV, Kronka MS, Cardoso ES, dos Santos AJ, Roveda AC, Lima FH, Ledendecker M, Maia G, Lanza MR. A comprehensive comparison of oxygen and nitrogen functionalities in carbon and their implications for the oxygen reduction reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Catalytic electrodes for the oxygen reduction reaction based on co-doped (B-N, Si-N, S-N) carbon quantum dots and anion exchange ionomer. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Peera SG, Liu C. Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Liao Y, Chen H, Ou C, Bao L, Li R, Liu H. N, P co-doped graphene enriched Phosphorus as a highly efficient oxygen reduction catalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Wang H, Chen X, Sun T, Li Y, Lv X, Li Y, Wang H. Cobalt nanoparticles embedded into nitrogen-doped graphene with abundant macropores as a bifunctional electrocatalyst for rechargeable zinc-air batteries. Chem Asian J 2022; 17:e202200390. [PMID: 35582772 DOI: 10.1002/asia.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/12/2022] [Indexed: 11/11/2022]
Abstract
Nitrogen doped carbon materials containing transition metal nanoparticles have attracted much attention as bifunctional oxygen electrocatalysts. In this paper, the template etching method is used to obtain the nitrogen-doped graphene with abundant macropores embedded with cobalt nanoparticles (Co@N-C). The prepared Co@NC-800 catalyst has a half-wave potential (E 1/2= 0.835V) close to Pt/C and good stability in excess of Pt/C for oxygen reduction reaction (ORR). At the same time, the catalyst has good oxygen evolution reaction (OER) performance. In addition, zinc-air batteries (ZABs) based on the Co@NC-800 catalyst show good cycle stability of up to 200000 s and high power density of 73.5 mW cm -2 . The synergistic effect of the integrated component between nitrogen-doped graphene and cobalt nanoparticles as well as the macroporous structure endow Co@NC-800 with abundant exposed active sites and mass/electron transfer capacity, thus leading to the high electrocatalytic activity. This work shows potential for practical applications in electrochemistry.
Collapse
Affiliation(s)
- Han Wang
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Xinyu Chen
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Tiantian Sun
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Yanwei Li
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Xiaoling Lv
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Yanhui Li
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Hengguo Wang
- Northeast Normal University, Faculty of Chemistry, 7989 Weixing Road, 130022, Changchun, CHINA
| |
Collapse
|
10
|
Chen W, Ge C, Li JT, Beckham JL, Yuan Z, Wyss KM, Advincula PA, Eddy L, Kittrell C, Chen J, Luong DX, Carter RA, Tour JM. Heteroatom-Doped Flash Graphene. ACS NANO 2022; 16:6646-6656. [PMID: 35320673 DOI: 10.1021/acsnano.2c01136] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heteroatom doping can effectively tailor the local structures and electronic states of intrinsic two-dimensional materials, and endow them with modified optical, electrical, and mechanical properties. Recent studies have shown the feasibility of preparing doped graphene from graphene oxide and its derivatives via some post-treatments, including solid-state and solvothermal methods, but they require reactive and harsh reagents. However, direct synthesis of various heteroatom-doped graphene in larger quantities and high purity through bottom-up methods remains challenging. Here, we report catalyst-free and solvent-free direct synthesis of graphene doped with various heteroatoms in bulk via flash Joule heating (FJH). Seven types of heteroatom-doped flash graphene (FG) are synthesized through millisecond flashing, including single-element-doped FG (boron, nitrogen, oxygen, phosphorus, sulfur), two-element-co-doped FG (boron and nitrogen), as well as three-element-co-doped FG (boron, nitrogen, and sulfur). A variety of low-cost dopants, such as elements, oxides, and organic compounds are used. The graphene quality of heteroatom-doped FG is high, and similar to intrinsic FG, the material exhibits turbostraticity, increased interlayer spacing, and superior dispersibility. Electrochemical oxygen reduction reaction of different heteroatom-doped FG is tested, and sulfur-doped FG shows the best performance. Lithium metal battery tests demonstrate that nitrogen-doped FG exhibits a smaller nucleation overpotential compared to Cu or undoped FG. The electrical energy cost for the synthesis of heteroatom-doped FG synthesis is only 1.2 to 10.7 kJ g-1, which could render the FJH method suitable for low-cost mass production of heteroatom-doped graphene.
Collapse
|
11
|
Zhang M, Zhang J, Ran S, Sun W, Zhu Z. Biomass-Derived Sustainable Carbon Materials in Energy Conversion and Storage Applications: Status and Opportunities. A mini review. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
12
|
Sokka A, Mooste M, Marandi M, Käärik M, Kozlova J, Kikas A, Kisand V, Treshchalov A, Tamm A, Leis J, Holdcroft S, Tammeveski K. Polypyrrole and Polythiophene Modified Carbon Nanotube‐Based Cathode Catalysts for Anion Exchange Membrane Fuel Cell. ChemElectroChem 2022. [DOI: 10.1002/celc.202200161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andri Sokka
- University of Tartu: Tartu Ulikool Institute of Chemistry ESTONIA
| | - Marek Mooste
- University of Tartu: Tartu Ulikool Institute of Chemistry ESTONIA
| | - Margus Marandi
- Tartu Ülikool: Tartu Ulikool Institute of Chemistry ESTONIA
| | - Maike Käärik
- University of Tartu: Tartu Ulikool Institute of Chemistry ESTONIA
| | | | - Arvo Kikas
- University of Tartu: Tartu Ulikool Institute of Physics ESTONIA
| | - Vambola Kisand
- University of Tartu: Tartu Ulikool Institute of Physics ESTONIA
| | | | - Aile Tamm
- University of Tartu: Tartu Ulikool Institute of Physics ESTONIA
| | - Jaan Leis
- University of Tartu: Tartu Ulikool Institute of Chemistry ESTONIA
| | | | - Kaido Tammeveski
- University of Tartu Institute of Chemistry Ravila 14a 50411 Tartu ESTONIA
| |
Collapse
|
13
|
Yu H, Zhao X, Wu F, Luo Y, Jia A, Wang Y, Li J. Three Dimensional Macroporous Oxygen‐Deficient TiO
2‐x
Supported N, P, Co‐tridoped Carbon as Efficient Oxygen Reduction Electrocatalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202101311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hang Yu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Ximeng Zhao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Feichao Wu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Yuhong Luo
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Aizhong Jia
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
14
|
Abstract
Fuel cells are a promising alternative to non-renewable energy production industries such as petroleum and natural gas. The cathodic oxygen reduction reaction (ORR), which makes fuel cell technology possible, is sluggish under normal conditions. Thus, catalysts must be used to allow fuel cells to operate efficiently. Traditionally, platinum (Pt) catalysts are often utilized as they exhibit a highly efficient ORR with low overpotential values. However, Pt is an expensive and precious metal, posing economic problems for commercialization. Herein, advances in carbon-based catalysts are reviewed for their application in ORRs due to their abundance and low-cost syntheses. Various synthetic methods from different renewable sources are presented, and their catalytic properties are compared. Likewise, the effects of heteroatom and non-precious metal doping, surface area, and porosity on their performance are investigated. Carbon-based support materials are discussed in relation to their physical properties and the subsequent effect on Pt ORR performance. Lastly, advances in fuel cell electrolytes for various fuel cell types are presented. This review aims to provide valuable insight into current challenges in fuel cell performance and how they can be overcome using carbon-based materials and next generation electrolytes.
Collapse
|
15
|
Moni P, Mooste M, Tammeveski K, Rezwan K, Wilhelm M. One-dimensional polymer-derived ceramic nanowires with electrocatalytically active metallic silicide tips as cathode catalysts for Zn-air batteries. RSC Adv 2021; 11:39707-39717. [PMID: 35494147 PMCID: PMC9044625 DOI: 10.1039/d1ra05688c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
New metallic nickel/cobalt/iron silicide droplets at the tips of polymer-derived ceramic (PDC) nanowires have been identified as stable and efficient cathode catalysts for Zn-air batteries. The as-prepared catalyst having a unique one-dimensional (1D) PDC nanowire structure with the presence of metallic silicide tips of 1D-PDC plays a crucial role in facilitating oxygen reduction/evolution reaction kinetics. The Zn-air battery was designed using Ni/PDC, Co/PDC and Fe/PDC as air electrode catalysts. In electrochemical half-cell tests, it was observed that the catalysts have a good bifunctional electrocatalytic activity. The efficiency of the catalysts to function as a cathode catalyst in real-time primary and mechanically rechargeable Zn-air battery configurations was determined. The primary battery testing results revealed that Ni/PDC and Co/PDC exhibited a stable discharge voltage plateau up to 29 h. The Fe/PDC sample, on the other hand, performed up to 23 h with an operating potential of 1.20 V at the discharge current density of 5 mA cm-2 after which the battery ceased to perform. The Ni/PDC, Co/PDC, and Fe/PDC cathode catalysts performed galvanostatic 1200 charge-discharge cycles in a mechanically rechargeable secondary Zn-air battery configuration. The results demonstrate that the Ni/PDC, Co/PDC, and Fe/PDC materials serve as excellent and durable bifunctional cathode electrocatalysts for Zn-air batteries.
Collapse
Affiliation(s)
- Prabu Moni
- University of Bremen, Advanced Ceramics Am Biologischen Garten 2, IW3 Bremen 28359 Germany +49 421 218 64932 +49 421 218 64944
| | - Marek Mooste
- Institute of Chemistry, University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Kaido Tammeveski
- Institute of Chemistry, University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Kurosch Rezwan
- University of Bremen, Advanced Ceramics Am Biologischen Garten 2, IW3 Bremen 28359 Germany +49 421 218 64932 +49 421 218 64944
- University of Bremen, MAPEX Center for Materials and Processes Bibliothekstraße 1 28359 Bremen Germany
| | - Michaela Wilhelm
- University of Bremen, Advanced Ceramics Am Biologischen Garten 2, IW3 Bremen 28359 Germany +49 421 218 64932 +49 421 218 64944
| |
Collapse
|
16
|
Metal-free, NH3-activated N-doped mesoporous nanocarbon electrocatalysts for the oxygen reduction reaction. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Tong X, Cherif M, Zhang G, Zhan X, Ma J, Almesrati A, Vidal F, Song Y, Claverie JP, Sun S. N, P-Codoped Graphene Dots Supported on N-Doped 3D Graphene as Metal-Free Catalysts for Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30512-30523. [PMID: 34170669 DOI: 10.1021/acsami.1c03141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrogen and phosphorus-codoped graphene dots supported on nitrogen-doped three-dimensional graphene (N, P-GDs/N-3DG) have been synthesized by a facile freeze-annealing process. On the surface of the 3D interconnected porous structure, the N, P-GDs are uniformly dispersed. The as-prepared N, P-GDs/N-3DG material served as a metal-free catalyst for oxygen reduction reaction (ORR) in an alkaline medium and evaluated by a rotating ring-disk electrode. The N, P-GDs/N-3DG catalyst exhibits excellent ORR activity, which is comparable to that of the commercial Pt/C catalyst. Furthermore, it exhibits a higher tolerance to methanol and better stability than the Pt/C. This enhanced electrochemical catalytic performance can be ascribed to the presence of abundant functional groups and edge defects. This study indicates that P-N bonded structures play a vital role as the active sites in ORR.
Collapse
Affiliation(s)
- Xin Tong
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec J3X 1S2, Canada
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 55000, China
| | - Mohamed Cherif
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Xinxing Zhan
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 55000, China
| | - Jugang Ma
- School of Mathematics and Physics, University of Science & Technology Beijing, Beijing 10008, China
| | - Ali Almesrati
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - François Vidal
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Yujun Song
- School of Mathematics and Physics, University of Science & Technology Beijing, Beijing 10008, China
| | - Jerome P Claverie
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| |
Collapse
|
18
|
Nitrogen and Sulfur Co-Doped Graphene as Efficient Electrode Material for L-Cysteine Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two graphene samples co-doped with nitrogen and sulfur were synthesized by the hydrothermal method using thiourea as doping and reducing agent for graphene oxide (GO). An appropriate amount of thiourea was added to the aqueous dispersion of GO, previously sonicated for 30 min. The mixture was poured into an autoclave and placed in the oven for 3 h, at 120 and 200 °C. The samples were denoted NSGr-120 and NSGr-200, respectively, in agreement with the reaction temperatures. They were next morphologically and structurally characterized by advanced techniques, such as SEM/TEM, XPS, XRD, and FTIR. According to XPS analysis, the NSGr-120 sample has higher amounts of heteroatoms in comparison with NSGr-200, indicating that the reaction temperature is a crucial factor that affects the doping degree. In order to reveal the influence of the doping degree on the electrochemical performances of graphene-modified electrodes, they were tested in solutions containing L-cysteine molecules. The electrode with the best electrocatalytic performances, GC/NSGr-120, was tested to detect L-cysteine in a pharmaceutical drug, proving its applicability in real sample analysis.
Collapse
|
19
|
Palm I, Kibena-Põldsepp E, Mäeorg U, Kozlova J, Käärik M, Kikas A, Leis J, Kisand V, Tamm A, Tammeveski K. Silicon carbide-derived carbon electrocatalysts dual doped with nitrogen and phosphorus for the oxygen reduction reaction in an alkaline medium. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
20
|
Nanocomposite Cathode Catalysts Containing Platinum Deposited on Carbon Nanotubes Modified by O, N, and P Atoms. Catalysts 2021. [DOI: 10.3390/catal11030335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Platinum deposited on dispersed materials has so far been the most demanded catalyst for creating cathodes for a wide range of electrochemical power sources. This paper sets out to investigate the effect of carbon nanotube (CNT) modification by O, N, and P atoms on the structural, electrocatalytic, and corrosion properties of the as-synthesized monoplatinum catalysts. The investigated Pt/CNTmod catalysts showed an increased electrochemically active platinum surface area and electrical conductivity, as well as an increased catalytic activity in the oxygen reduction reaction (ORR) in alkaline electrolytes. The improved characteristics of Pt/CNT catalysts are explained by alterations in the composition and number of groups, which are formed on the CNT surface, and their electronic structure. By the sum of the main characteristics, Pt/CNTHNO3+N and Pt/CNTHNO3+NP are the most promising catalysts for use as cathode materials in alkaline media.
Collapse
|
21
|
Lilloja J, Kibena-Põldsepp E, Sarapuu A, Douglin JC, Käärik M, Kozlova J, Paiste P, Kikas A, Aruväli J, Leis J, Sammelselg V, Dekel DR, Tammeveski K. Transition-Metal- and Nitrogen-Doped Carbide-Derived Carbon/Carbon Nanotube Composites as Cathode Catalysts for Anion-Exchange Membrane Fuel Cells. ACS Catal 2021; 11:1920-1931. [PMID: 35028188 PMCID: PMC8744415 DOI: 10.1021/acscatal.0c03511] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Transition-metal- and nitrogen-codoped carbide-derived carbon/carbon nanotube composites (M-N-CDC/CNT) have been prepared, characterized, and used as cathode catalysts in anion-exchange membrane fuel cells (AEMFCs). As transition metals, cobalt, iron, and a combination of both have been investigated. Metal and nitrogen are doped through a simple high-temperature pyrolysis technique with 1,10-phenanthroline as the N precursor. The physicochemical characterization shows the success of metal and nitrogen doping as well as very similar morphologies and textural properties of all three composite materials. The initial assessment of the oxygen reduction reaction (ORR) activity, employing the rotating ring-disk electrode method, indicates that the M-N-CDC/CNT catalysts exhibit a very good electrocatalytic performance in alkaline media. We find that the formation of HO2 - species in the ORR catalysts depends on the specific metal composition (Co, Fe, or CoFe). All three materials show excellent stability with a negligible decline in their performance after 10000 consecutive potential cycles. The very good performance of the M-N-CDC/CNT catalyst materials is attributed to the presence of M-N x and pyridinic-N moieties as well as both micro- and mesoporous structures. Finally, the catalysts exhibit excellent performance in in situ tests in H2/O2 AEMFCs, with the CoFe-N-CDC/CNT reaching a current density close to 500 mA cm-2 at 0.75 V and a peak power density (P max) exceeding 1 W cm-2. Additional tests show that P max reaches 0.8 W cm-2 in an H2/CO2-free air system and that the CoFe-N-CDC/CNT material exhibits good stability under both AEMFC operating conditions.
Collapse
Affiliation(s)
- Jaana Lilloja
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Elo Kibena-Põldsepp
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Ave Sarapuu
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - John C. Douglin
- The
Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Maike Käärik
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Jekaterina Kozlova
- Institute
of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Päärn Paiste
- School
of Engineering, Department of Energy Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- Institute
of Ecology and Earth Sciences, University
of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Arvo Kikas
- Institute
of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Jaan Aruväli
- Institute
of Ecology and Earth Sciences, University
of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Jaan Leis
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Väino Sammelselg
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- Institute
of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Dario R. Dekel
- The
Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
- The Nancy
& Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Kaido Tammeveski
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
22
|
Ren G, Huang B, Li C, Lin C, Qian Y. Facile and template-free strategy to construct N, P co-doped porous carbon nanosheets as a highly efficient electrocatalyst towards oxygen reduction reaction. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Mooste M, Kibena‐Põldsepp E, Vassiljeva V, Kikas A, Käärik M, Kozlova J, Kisand V, Külaviir M, Cavaliere S, Leis J, Krumme A, Sammelselg V, Holdcroft S, Tammeveski K. Electrospun Polyacrylonitrile‐Derived Co or Fe Containing Nanofibre Catalysts for Oxygen Reduction Reaction at the Alkaline Membrane Fuel Cell Cathode. ChemCatChem 2020. [DOI: 10.1002/cctc.202000658] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marek Mooste
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | | | - Viktoria Vassiljeva
- Department of Materials and Environmental Technology Tallinn University of Technology Ehitajate tee 5 19086 Tallinn Estonia
| | - Arvo Kikas
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Maike Käärik
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Jekaterina Kozlova
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Vambola Kisand
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Marian Külaviir
- Institute of Ecology and Earth Sciences University of Tartu Vanemuise 46 51014 Tartu Estonia
| | - Sara Cavaliere
- ICGM Univ. Montpellier, CNRS, ENSCM Montpellier 34095 France
- Institut Universitaire de France (IUF) Paris 75231 France
| | - Jaan Leis
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Andres Krumme
- Department of Materials and Environmental Technology Tallinn University of Technology Ehitajate tee 5 19086 Tallinn Estonia
| | - Väino Sammelselg
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Steven Holdcroft
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby, BC V5A 1S6 Canada
| | - Kaido Tammeveski
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| |
Collapse
|
24
|
N, P-co doped carbon nanotubes coupled with Co2P nanoparticles as bifunctional oxygen electrocatalyst. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Yuan Y, Li R, Thomas T, Chen J, Yang M. Flower‐like FeS Coated with Heteroatom (S,N)‐Doped Carbon as Highly Active and Durable Oxygen Reduction Electrocatalysts. ChemElectroChem 2020. [DOI: 10.1002/celc.202000156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yao Yuan
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Rongrong Li
- Solid State Functional Materials Research LaboratoryNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Tiju Thomas
- Department of Metallurgical and Materials EngineeringIndian Institute of Technology Madras Adyar Chennai 600036 Tamil Nadu India
| | - Jian Chen
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Minghui Yang
- Solid State Functional Materials Research LaboratoryNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 P. R. China
| |
Collapse
|
26
|
Cardoso ES, Fortunato GV, Palm I, Kibena-Põldsepp E, Greco AS, Júnior JL, Kikas A, Merisalu M, Kisand V, Sammelselg V, Tammeveski K, Maia G. Effects of N and O groups for oxygen reduction reaction on one- and two-dimensional carbonaceous materials. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Sibul R, Kibena‐Põldsepp E, Ratso S, Kook M, Sougrati MT, Käärik M, Merisalu M, Aruväli J, Paiste P, Treshchalov A, Leis J, Kisand V, Sammelselg V, Holdcroft S, Jaouen F, Tammeveski K. Iron‐ and Nitrogen‐Doped Graphene‐Based Catalysts for Fuel Cell Applications. ChemElectroChem 2020. [DOI: 10.1002/celc.202000011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Roberta Sibul
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | | | - Sander Ratso
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Mati Kook
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | | | - Maike Käärik
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Maido Merisalu
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Jaan Aruväli
- Institute of Ecology and Earth Sciences University of Tartu Vanemuise 46 51014 Tartu Estonia
| | - Päärn Paiste
- Institute of Ecology and Earth Sciences University of Tartu Vanemuise 46 51014 Tartu Estonia
| | - Alexey Treshchalov
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Jaan Leis
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Vambola Kisand
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Väino Sammelselg
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Steven Holdcroft
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Frédéric Jaouen
- ICGM Univ. Montpellier, CNRS, ENSCM 34095 Montpellier France
| | - Kaido Tammeveski
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| |
Collapse
|