1
|
Mie Y, Mikami C, Yasutake Y, Shigemura Y, Yamashita T, Tsujino H. Electrochemical Analysis and Inhibition Assay of Immune-Modulating Enzyme, Indoleamine 2,3-Dioxygenase. Pharmaceuticals (Basel) 2025; 18:352. [PMID: 40143129 PMCID: PMC11944389 DOI: 10.3390/ph18030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background: An accurate and rapid analysis of human indoleamine 2,3-dioxygenase (hIDO) is crucial for the development of anticancer pharmaceuticals because of the role of hIDO in promoting tumoral immune escape. However, the conventional assay of hIDO is limited by interference from reductants, which are used to reduce the heme iron to begin the hIDO catalytic reaction. Methods: A direct electrochemical method was applied to drive the hIDO reaction. Results: The nanostructured gold electrode enabled the electrochemical reduction of the heme iron of hIDO1. In the presence of substrates (tryptophan and oxygen), a bioelectrocatalytic current was observed, confirming an electrochemically driven hIDO reaction. A well-known inhibitor of hIDO, epacadostat, hindered this catalytic signal according to its concentration, demonstrating the rapid evaluation of its inhibition activity for the hIDO reaction. Through an in silico study using the proposed electrochemical assay system, we discovered a strong inhibitor candidate with a half-maximal inhibitory concentration of 10 nM. Conclusions: An accurate and rapid assay system in drug discovery for hIDO and kynureine pathway-targeted immunotherapy has been developed.
Collapse
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan (Y.Y.)
| | - Chitose Mikami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan (Y.Y.)
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan (Y.Y.)
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo 169-8555, Japan
| | - Yuki Shigemura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan (H.T.)
| | - Taku Yamashita
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, Nishinomiya 663-8179, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan (H.T.)
- Museum Links, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Semenova MA, Bochkova ZV, Smirnova OM, Maksimov GV, Kirpichnikov MP, Dolgikh DA, Brazhe NA, Chertkova RV. Charged Amino Acid Substitutions Affect Conformation of Neuroglobin and Cytochrome c Heme Groups. Curr Issues Mol Biol 2024; 46:3364-3378. [PMID: 38666941 PMCID: PMC11049214 DOI: 10.3390/cimb46040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroglobin (Ngb) is a cytosolic heme protein that plays an important role in protecting cells from apoptosis through interaction with oxidized cytochrome c (Cyt c) released from mitochondria. The interaction of reduced Ngb and oxidized Cyt c is accompanied by electron transfer between them and the reduction in Cyt c. Despite the growing number of studies on Ngb, the mechanism of interaction between Ngb and Cyt c is still unclear. Using Raman spectroscopy, we studied the effect of charged amino acid substitutions in Ngb and Cyt c on the conformation of their hemes. It has been shown that Ngb mutants E60K, K67E, K95E and E60K/E87K demonstrate changed heme conformations with the lower probability of the heme planar conformation compared to wild-type Ngb. Moreover, oxidized Cyt c mutants K25E, K72E and K25E/K72E demonstrate the decrease in the probability of methyl-radicals vibrations, indicating the higher rigidity of the protein microenvironment. It is possible that these changes can affect electron transfer between Ngb and Cyt c.
Collapse
Affiliation(s)
- Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
| | - Zhanna V. Bochkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia;
| | - Olga M. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
| | - Georgy V. Maksimov
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia;
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia
| | - Nadezda A. Brazhe
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia;
| | - Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
| |
Collapse
|
3
|
González-Martínez E, Moran-Mirabal J. Shrinking Devices: Shape-Memory Polymer Fabrication of Micro-and Nanostructured Electrodes. Chemphyschem 2024; 25:e202300535. [PMID: 38060839 DOI: 10.1002/cphc.202300535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Since their discovery in the 1940s, shape memory polymers (SMPs) have been used in a broad spectrum of applications for research and industry.[1] SMPs can adopt a temporary shape and promptly return to their original form when submitted to an external stimulus. They have proven useful in fields such as wearable and stretchable electronics,[2] biomedicine,[3] and aerospace..[4] These materials are attractive and unique due to their ability to "remember" a shape after being submitted to elastic deformation. By combining the properties of SMPs with the advantages of electrochemistry, opportunities have emerged to develop structured sensing devices through simple and inexpensive fabrication approaches. The use of electrochemistry for signal transduction provides several advantages, including the translation into inexpensive sensing devices that are relatively easy to miniaturize, extremely low concentration requirements for detection, rapid sensing, and multiplexed detection. Thus, electrochemistry has been used in biosensing,[5] pollutant detection,[6] and pharmacological[7] applications, among others. To date, there is no review that summarizes the literature addressing the use of SMPs in the fabrication of structured electrodes for electrochemical sensing. This review aims to fill this gap by compiling the research that has been done on this topic over the last decade.
Collapse
Affiliation(s)
- Eduardo González-Martínez
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1
| | - Jose Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1
- Centre for Advanced Light Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1
- Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4 M1
| |
Collapse
|
4
|
Semenova MA, Chertkova RV, Kirpichnikov MP, Dolgikh DA. Molecular Interactions between Neuroglobin and Cytochrome c: Possible Mechanisms of Antiapoptotic Defense in Neuronal Cells. Biomolecules 2023; 13:1233. [PMID: 37627298 PMCID: PMC10452090 DOI: 10.3390/biom13081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Neuroglobin, which is a heme protein from the globin family that is predominantly expressed in nervous tissue, can promote a neuronal survivor. However, the molecular mechanisms underlying the neuroprotective function of Ngb remain poorly understood to this day. The interactions between neuroglobin and mitochondrial cytochrome c may serve as at least one of the mechanisms of neuroglobin-mediated neuroprotection. Interestingly, neuroglobin and cytochrome c possibly can interact with or without electron transfer both in the cytoplasm and within the mitochondria. This review provides a general picture of molecular interactions between neuroglobin and cytochrome c based on the recent experimental and computational work on neuroglobin and cytochrome c interactions.
Collapse
Affiliation(s)
- Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
| | - Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russia
| |
Collapse
|
5
|
Mie Y, Okabe H, Mikami C, Motomura T, Matsuda N. Nanostructured gold thin film electrode derived from surfactant-free gold nanoparticles for enhanced electrocatalysis. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2022.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Gorabi AM, Aslani S, Barreto GE, Báez-Jurado E, Kiaie N, Jamialahmadi T, Sahebkar A. The potential of mitochondrial modulation by neuroglobin in treatment of neurological disorders. Free Radic Biol Med 2021; 162:471-477. [PMID: 33166649 DOI: 10.1016/j.freeradbiomed.2020.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023]
Abstract
Neuroglobin is the third member of the globin family to be identified in 2000 in neurons of both human and mouse nervous systems. Neuroglobin is an oxygen-binding globin found in neurons within the central nervous system as well as in peripheral neurons, that produces a protective effect against hypoxic/ischemic damage induced by promoting oxygen availability within the mitochondria. Numerous investigations have demonstrated that impaired neuroglobin functioning is implicated in the pathogenesis of multiple neurodegenerative disorders. Several in vitro and animal studies have reported the potential of neuroglobin upregulation in improving the neuroprotection through modulation of mitochondrial functions, such as ATP production, clearing reactive oxygen species (ROS), promoting the dynamics of mitochondria, and controlling apoptosis. Neuroglobin acts as a stress-inducible globin, which has been associated hypoxic/ischemic insults where it acts to protect the heart and brain, providing a wide range of applicability in the treatment of human disorders. This review article discusses normal physiological functions of neuroglobin in mitochondria-associated pathways, as well as outlining how dysregulation of neuroglobin is associated with the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Eliana Báez-Jurado
- Departamento de Química, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
7
|
Mie Y, Takahashi K, Torii R, Jingkai S, Tanaka T, Sueyoshi K, Tsujino H, Yamashita T. Redox State Control of Human Cytoglobin by Direct Electrochemical Method to Investigate Its Function in Molecular Basis. Chem Pharm Bull (Tokyo) 2020; 68:806-809. [PMID: 32461519 DOI: 10.1248/cpb.c20-00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The direct electron transfer between human cytoglobin (Cygb) and the electrode surface, which would allow manipulating the oxidation states of the heme iron in Cygb, was first observed by immobilizing Cygb on a nanoporous gold (NPG) electrode via a carboxy-terminated alkanethiol. The voltammetric performances of the wild type and mutated Cygb-immobilized NPG electrodes were evaluated in the absence or presence of potential substrates. The obtained results demonstrated that the usefulness of the proposed method in understanding the function of Cygb in molecular basis.
Collapse
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kyoka Takahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ryo Torii
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shen Jingkai
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Takumi Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kenta Sueyoshi
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Taku Yamashita
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|