1
|
Klingler S, Bagemihl B, Mengele AK, Kaufhold S, Myllyperkiö P, Ahokas J, Pettersson M, Rau S, Mizaikoff B. Rationalizing In Situ Active Repair in Hydrogen Evolution Photocatalysis via Non-Invasive Raman Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202306287. [PMID: 37519152 DOI: 10.1002/anie.202306287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Currently, most photosensitizers and catalysts used in the field of artificial photosynthesis are still based on rare earth metals and should thus be utilized as efficiently and economically as possible. While repair of an inactivated catalyst is a potential mitigation strategy, this remains a challenge. State-of-the-art methods are crucial for characterizing reaction products during photocatalysis and repair, and are currently based on invasive analysis techniques limiting real-time access to the involved mechanisms. Herein, we use an innovative in situ technique for detecting both initially evolved hydrogen and after active repair via advanced non-invasive rotational Raman spectroscopy. This facilitates unprecedently accurate monitoring of gaseous reaction products and insight into the mechanism of active repair during light-driven catalysis enabling the identification of relevant mechanistic details along with innovative repair strategies.
Collapse
Affiliation(s)
- Sarah Klingler
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Benedikt Bagemihl
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Alexander K Mengele
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Simon Kaufhold
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Pasi Myllyperkiö
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 University of, Jyväskylä, Finland
| | - Jussi Ahokas
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 University of, Jyväskylä, Finland
- Financial and Facility Services, University of Jyväskylä, 40014 University of, Jyväskylä, Finland
| | - Mika Pettersson
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 University of, Jyväskylä, Finland
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Hahn-Schickard, Sedanstraße 4, 89081, Ulm, Germany
| |
Collapse
|
2
|
Martinez-Rojas F, Espinosa-Bustos C, Ramirez G, Armijo F. Electrochemical oxidation of chlorpromazine, characterisation of products by mass spectroscopy and determination in pharmaceutical samples. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
3
|
Aguinaga Martínez MV, Jozičová N, Dušek J, Horstkotte B, Pávek P, Miró M, Sklenářová H. Real-time monitoring of Metridia luciferase release from cells upon interaction with model toxic substances by a fully automatic flow setup - A proof of concept. Talanta 2022; 245:123465. [PMID: 35427949 DOI: 10.1016/j.talanta.2022.123465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
Abstract
This manuscript reports on a fully automatic sequential injection system incorporating a 3D printed module for real-time monitoring of the release of Metridia luciferase from a modified liver epithelial cell line. To this end, a simple and effective approach for the automation of flash-type chemiluminescence assays was developed. The 3D printed module comprised an apical and a basal compartment that enabled monitoring membrane processes on both sides of the cell monolayer aimed at elucidating the direction of luciferase release. A natural release was observed after transfection with the luciferase plasmid by online measurement of the elicited light from the reaction of the synthesized luciferase with the coelenterazine substrate. Model substances for acute toxicity from the group of cholic acids - chenodeoxycholic and deoxycholic acids - were applied at the 1.0 and 0.5 mmol L-1 levels. The tested cholic acids caused changes in cell membrane permeability that was accompanied by an increased luciferase release. The obtained kinetic profiles were evaluated based on the delay between the addition of the toxic substance and the increase of the chemiluminescence signal. All experiments were carried out in a fully automatic system in ca. 5 min per sample in 30 min intervals and no manual interventions were needed for a sampling period of at least 6 h.
Collapse
Affiliation(s)
- Maite V Aguinaga Martínez
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - Natali Jozičová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jan Dušek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Burkhard Horstkotte
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Manuel Miró
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Hana Sklenářová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Queiroz AC, Souza ML, Camilo MR, Silva WO, Cantane DA, Messias I, Pinto MR, Nagao R, Lima FHB. Electrochemical Mass Spectrometry: Evolutions of the Cell Setup for On‐line Investigation of Products and Screening of Electrocatalysts for Carbon Dioxide Reduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Wanderson O. Silva
- Ecole Polytechnique Federale de Lausanne Laboratory of Physical and Analytical Electrochemistry SWITZERLAND
| | | | - Igor Messias
- University of Campinas Institute of Chemistry BRAZIL
| | | | - Raphael Nagao
- University of Campinas Institute of Chemistry BRAZIL
| | - Fabio H. B Lima
- Universidade de Sao Paulo - Instituto de Quimica de Sao Carlos Físico-Química Av. Trabalhador Saocarlense, 400Centro 13566-590 São Carlos BRAZIL
| |
Collapse
|