1
|
Tamboli AM, Jung Y, Sim J, Kim B, Kim WS, Kim M, Lee C, Kim K, Lim C, Kim K, Cho HS, Kim CH. Boosting oxygen evolution reaction activity with Mo incorporated NiFe-LDH electrocatalyst for efficient water electrolysis. CHEMOSPHERE 2023; 344:140314. [PMID: 37769914 DOI: 10.1016/j.chemosphere.2023.140314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
This work demonstrates a simple and scalable methodology for the binder-free direct growth of Mo-doped NiFe-layered double hydroxides on a nickel substrate via an electrodeposition route at room temperature. A three-dimensional (3D) nanosheet array morphology of the electrocatalyst provides immense electrochemical surface area as well as abundant catalytically active sites. Mo incorporation in the NiFe-LDH plays a crucial role in regulating the catalytic activity of oxygen evolution reaction (OER). The prepared electrocatalyst exhibited low overpotential (i.e., 230 mV) at 30 mA cm-2 for OER in an alkaline electrolyte (i.e., 1 M KOH). Furthermore, the optimized Mo-doped NiFe-LDH electrode was used as an anode in a laboratory-scale in situ single cell test system for alkaline water electrolysis at 80 °C with a continuous flow of 30 wt% KOH, and it shows the efficient electrochemical performance with a lower cell voltage of 1.80 V at a current density of 400 mA cm-2. In addition, an admirable long-term cell durability is also demonstrated by the cell for 24 h. This work encourages new designs and further development of electrode material for alkaline water electrolysis on a commercial scale.
Collapse
Affiliation(s)
- Asiya M Tamboli
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea
| | - Younghan Jung
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea
| | - Junseok Sim
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea
| | - Bonghyun Kim
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea
| | - Wan Sik Kim
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea
| | - MinJoong Kim
- Hydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Changsoo Lee
- Hydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Kilwon Kim
- Korea Research Institute of Ships and Ocean Engineering, 32, Yuseong-daero 1312 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - ChangHyuck Lim
- Korea Research Institute of Ships and Ocean Engineering, 32, Yuseong-daero 1312 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - KyongHwan Kim
- Korea Research Institute of Ships and Ocean Engineering, 32, Yuseong-daero 1312 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun-Seok Cho
- Hydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea.
| | - Chang-Hee Kim
- School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea.
| |
Collapse
|