1
|
Dong L, Zeng X, Xiong Y, Xiao X, Zhan D, Wang S. Enzymatic bioelectrodes based on ferrocene-modified metal-organic layers for electrochemical glucose detection. Anal Bioanal Chem 2025; 417:2217-2224. [PMID: 40014071 DOI: 10.1007/s00216-025-05808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Metal-organic frameworks (MOFs) are often applied for enzyme immobilization, while they are limited for bioelectrochemical applications due to poor electronic conductivity. Two-dimensional (2D) metal-organic layers (MOLs) with an ultra-thin lamellar structure can effectively shorten the electron transport path and improve the electron transfer rate. In this study, ferrocene as an electron mediator is covalently bound to a 2D-MOL (Fc-NH2-Hf-BTB-MOL) to accelerate electron transfer between the electrode surface and enzyme. Glucose oxidase (GOx) is immobilized on the electrode modified with Fc-NH2-Hf-BTB-MOL with the addition of chitosan and carboxylated carbon nanotubes. Electrochemical tests such as cyclic voltammetry are carried out on the glucose biosensor, which shows linear detection ranges of 5 ~ 400 μM and 3 ~ 9 mM, with a detection limit of 3.9 μM (S/N = 3). Therefore, this strategy of construction of an enzyme electrode based on 2D-MOLs with enhanced electron transfer results in a biosensor with excellent specificity and activity for practical glucose detection.
Collapse
Affiliation(s)
- Lingling Dong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuefu Zeng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu Xiong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg East, Denmark
| | - Dongping Zhan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
2
|
Cai J, Shen F, Zhao J, Xiao X. Enzymatic biofuel cell: A potential power source for self-sustained smart textiles. iScience 2024; 27:108998. [PMID: 38333690 PMCID: PMC10850773 DOI: 10.1016/j.isci.2024.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Self-sustained smart textiles require a miniaturized and flexible power source, while the state-of-the-art lithium-ion battery cannot be seamlessly integrated into smart textiles. Enzymatic biofuel cells (EBFC), utilizing physiological glucose or lactate as fuels to convert chemical energy into electricity, are a potential alternative power source. In comparison to other proposed energy harvesters relying on solar and biomechanical energy, EBFCs feature several key properties, including continuous power generation, biocompatible interfaces without using toxic elements, simple configuration without extra packaging, and biodegradability. There is an urgent need to introduce EBFCs to the researchers working on smart textiles, who typically are not expert on bioelectrochemistry. This minireview first introduces the working principle of EBFC and then summarizes its recent progress on fibers, yarns, and textiles. It's expected that this review can help to bridge the knowledge gap and provide the community of smart textiles with information on both the strengths and limitations of EBFCs.
Collapse
Affiliation(s)
- Jingsheng Cai
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Fei Shen
- Jiangsu Zoolnasm Technology CO., LTD, Suzhou 215000, China
| | - Jianqing Zhao
- Jiangsu Zoolnasm Technology CO., LTD, Suzhou 215000, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
3
|
Tian H, Ma J, Li Y, Xiao X, Zhang M, Wang H, Zhu N, Hou C, Ulstrup J. Electrochemical sensing fibers for wearable health monitoring devices. Biosens Bioelectron 2024; 246:115890. [PMID: 38048721 DOI: 10.1016/j.bios.2023.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Real-time monitoring of health conditions is an emerging strong issue in health care, internet information, and other strongly evolving areas. Wearable electronics are versatile platforms for non-invasive sensing. Among a variety of wearable device principles, fiber electronics represent cutting-edge development of flexible electronics. Enabled by electrochemical sensing, fiber electronics have found a wide range of applications, providing new opportunities for real-time monitoring of health conditions by daily wearing, and electrochemical fiber sensors as explored in the present report are a promising emerging field. In consideration of the key challenges and corresponding solutions for electrochemical sensing fibers, we offer here a timely and comprehensive review. We discuss the principles and advantages of electrochemical sensing fibers and fabrics. Our review also highlights the importance of electrochemical sensing fibers in the fabrication of "smart" fabric designs, focusing on strategies to address key issues in fiber-based electrochemical sensors, and we provide an overview of smart clothing systems and their cutting-edge applications in therapeutic care. Our report offers a comprehensive overview of current developments in electrochemical sensing fibers to researchers in the fields of wearables, flexible electronics, and electrochemical sensing, stimulating forthcoming development of next-generation "smart" fabrics-based electrochemical sensing.
Collapse
Affiliation(s)
- Hang Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Junlin Ma
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, PR China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Nan Zhu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
4
|
Kuznetsova LS, Arlyapov VA, Plekhanova YV, Tarasov SE, Kharkova AS, Saverina EA, Reshetilov AN. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers (Basel) 2023; 15:3783. [PMID: 37765637 PMCID: PMC10536614 DOI: 10.3390/polym15183783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Vyacheslav A. Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Yulia V. Plekhanova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Tarasov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna S. Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Evgeniya A. Saverina
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
- Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
5
|
Jayakumar K, Lielpetere A, Domingo-Lopez DA, Levey RE, Duffy GP, Schuhmann W, Leech D. Tethering zwitterionic polymer coatings to mediated glucose biosensor enzyme electrodes can decrease sensor foreign body response yet retain sensor sensitivity to glucose. Biosens Bioelectron 2023; 219:114815. [PMID: 36302333 DOI: 10.1016/j.bios.2022.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Foreign body response (FBR) is a major challenge that affects implantable biosensors and medical devices, including glucose biosensors, leading to a deterioration in device response over time. Polymer shields are often used to mitigate this issue. Zwitterionic polymers (ZPs) are a promising class of materials that reduce biofouling of implanted devices. A series of ZPs each containing tetherable epoxide functional groups was synthesised for application as a polymer shield for eventual application as implantable glucose biosensors. The polymer shields were initially tested for the ability to resist fibrinogen adsorption and fibroblast adhesion. All synthesised ZPs showed comparable behaviour to a commercial Lipidure ZP in resisting fibrinogen adsorption. Nafion, a common anionic shield used against electrochemical interferents, showed higher protein adsorption and comparable cell adhesion resistance as uncoated control surfaces. However, a poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate) (MPC)-type ZP showed similar behaviour to Lipidure, with approximately 50% reduced fibrinogen adsorption and 80% decrease in fibroblast adhesion compared to uncoated controls. An MPC-coated amperometric glucose biosensor showed comparable current density and a 1.5-fold increase in sensitivity over an uncoated control biosensor, whereas all other polymer shields tested, including Lipidure, Nafion and a poly(ethyleneglycol) polymer, resulted in lower sensitivity and current density. Collectively, these characteristics make MPC-polymer shield coatings an appealing possibility for use in implantable glucose sensors and other implanted devices with the aim of reducing FBR while maintaining sensor performance.
Collapse
Affiliation(s)
- Kavita Jayakumar
- School of Biological & Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Anna Lielpetere
- Analytical Chemistry-Center for Electrochemical Sciences, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Daniel A Domingo-Lopez
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, ,Galway, H91 TK33, Ireland
| | - Ruth E Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, ,Galway, H91 TK33, Ireland
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, ,Galway, H91 TK33, Ireland
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| | - Dónal Leech
- School of Biological & Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
6
|
Engineering bio-interfaces for the direct electron transfer of Myriococcum thermophilum cellobiose dehydrogenase: Towards a mediator-less biosupercapacitor/biofuel cell hybrid. Biosens Bioelectron 2022; 210:114337. [PMID: 35537312 DOI: 10.1016/j.bios.2022.114337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/24/2022]
Abstract
Direct electron transfer (DET) of enzymes on electrode surfaces is highly desirable both for fundamental mechanistic studies and to achieve membrane- and mediator-less bioenergy harvesting. In this report, we describe the preparation and comprehensive structural and electrochemical characterization of a three-dimensional (3D) graphene-based carbon electrode, onto which the two-domain redox enzyme Myriococcum thermophilum cellobiose dehydrogenase (MtCDH) is immobilized. The electrode is prepared by an entirely novel method, which combines in a single step electrochemical reduction of graphene oxide (GO) and simultaneous electrodeposition of positively charged polyethylenimine (PEI), resulting in a well dispersed MtCDH surface. The resulting MtCDH bio-interface was characterized structurally in detail, optimized, and found to exhibit a DET maximum current density of 7.7 ± 0.9 μA cm-2 and a half-lifetime of 48 h for glucose oxidation, attributed to favorable MtCDH surface orientation. A dual, entirely DET-based enzymatic biofuel cell (EBFC) was constructed with a MtCDH bioanode and a Myrothecium verrucaria bilirubin oxidase (MvBOD) biocathode. The EBFC delivers a maximum power density (Pmax) of 7.6 ± 1.3 μW cm-2, an open-circuit voltage (OCV) of 0.60 V, and an operational lifetime over seven days, which exceeds most reported CDH based DET-type EBFCs. A biosupercapacitor/EBFC hybrid was also constructed and found to register maximum power densities 62 and 43 times higher than single glucose/air and lactose/air EBFCs, respectively. This hybrid also shows excellent operational stability with self-charging/discharging over at least 500 cycles.
Collapse
|
7
|
Characterization and Kinetic Study of Immobilized of Phenylalanine Dehydrogenase on Metal Ions Coordinated Polydopamine-Coated MWNTs. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Wang S, Xiong Y, Sartin MM, Zhan D. Research Advances in Regulating the Microenviroment of Enzyme Electrodes in Non‐aqueous Systems: a Mini‐review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shizhen Wang
- Department of Chemical and Biochemical Engineering College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yu Xiong
- Department of Chemical and Biochemical Engineering College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Matthew M. Sartin
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry College of Chemistry Xiamen University Xiamen 361005 China
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry College of Chemistry Xiamen University Xiamen 361005 China
| |
Collapse
|
9
|
Affiliation(s)
- Huixin Liu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants School of Resources & Environmental Engineering East China University of Science & Technology Shanghai 200237 PR China
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes School of Resources & Environmental Engineering East China University of Science & Technology Shanghai 200237 PR China
| | - Xiaomei Yan
- Department of Chemistry Technical University of Denmark Kongens Lyngby 2800 Denmark
| | - Zhen Gu
- Department of Automation School of Information Science and Engineering East China University of Science & Technology Shanghai 200237 PR China
| | - Guangli Xiu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants School of Resources & Environmental Engineering East China University of Science & Technology Shanghai 200237 PR China
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes School of Resources & Environmental Engineering East China University of Science & Technology Shanghai 200237 PR China
| | - Xinxin Xiao
- Department of Chemistry Technical University of Denmark Kongens Lyngby 2800 Denmark
| |
Collapse
|
10
|
Polymers in Sensor and Biosensor Design. Polymers (Basel) 2021; 13:polym13060917. [PMID: 33809727 PMCID: PMC8002212 DOI: 10.3390/polym13060917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/01/2023] Open
|