1
|
Meng H, Gao W, Chen Y. Synergistic Anisotropic Network and Hierarchical Electrodes Endow Cost-Effective N-Type Quasi-Solid State Thermocell with Boosted Electricity Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310777. [PMID: 38299481 DOI: 10.1002/smll.202310777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Indexed: 02/02/2024]
Abstract
Quasi-solid state thermocells hold immense potential for harnessing untapped low-grade heat and converting it into electricity via the thermogalvanic effect. However, integrated N-type thermocells face limitations in thermoelectric performance due to the rare N-type systems and the poor electroactivity of the electrode interfaces. Herein, a low-cost, high-power N-type quasi-solid state thermocell employing PVA-CuSO4-Cu is presented, which is enhanced by synergistic engineering of an anisotropic network and hierarchical electrodes. The anisotropic polymer network, combined with the salting-out effect, yields impressive mechanical properties that exceed those of most N-type quasi-solid state thermocells. Furthermore, through the synergistic construction of aligned ion transport pathways in the anisotropic thermocell and optimization of the electroactive interface between electrodes and thermocell, a remarkable enhancement of 1500% in output power density (compared to pristine thermocell), reaching 0.51 mW m-2 at ∆T = 5 °C. It is believed that this cost-effective N-type thermocell, enhanced by the synergistic anisotropic network and hierarchical electrodes, paves the way for effective energy harvesting from diverse heat sources and promises to reshape sustainable energy utilization.
Collapse
Affiliation(s)
- Haofei Meng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Wei Gao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Yongping Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
2
|
Inoue H, Zhou H, Ando H, Nakagawa S, Yamada T. Exploring the local solvation structure of redox molecules in a mixed solvent for increasing the Seebeck coefficient of thermocells. Chem Sci 2023; 15:146-153. [PMID: 38131095 PMCID: PMC10732003 DOI: 10.1039/d3sc04955h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
A thermocell is an emerging alternative to thermoelectric devices and exhibits a high Seebeck coefficient (Se) due to the large change of solvation entropy associated with redox reactions. Here, the Se of p-chloranil radicals/dianions (CA˙-/2-) in acetonitrile was drastically increased from -1.3 to -2.6 mV K-1 by the addition of ethanol, and the increment surpassed the estimation of the classical Born model with continuum solvent media. UV-vis spectroscopy and electrochemical measurements at various mixing ratios of acetonitrile to ethanol revealed that the strong hydrogen bonding between ethanol and oxygen atoms of CA2- forms a 4 : 1 solvent-ion pair, while the ethanol molecules binding to CA2- dissociate upon its oxidation to CA˙-. The local solvation structures of CA2- are in good agreement with density functional theory. This order-disorder transition of the local solvation structure around the CA˙-/2- ions produces a large entropy change and results in a large Se value. The tailored solvation structure of redox ions by hydrogen bonding is a versatile method applicable to a variety of redox pairs and solvents, contributing to the development of electrolyte engineering for thermocells.
Collapse
Affiliation(s)
- Hirotaka Inoue
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hongyao Zhou
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hideo Ando
- Faculty of Science, Yamagata University 1-4-12 Kojirakawa-machi Yamagata 990-8560 Japan
| | - Sakuya Nakagawa
- Faculty of Science, Yamagata University 1-4-12 Kojirakawa-machi Yamagata 990-8560 Japan
| | - Teppei Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
3
|
Huo B, Kuang F, Guo CY. Design and Optimization Strategies for Flexible Quasi-Solid-State Thermo-Electrochemical Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6574. [PMID: 37834712 PMCID: PMC10573773 DOI: 10.3390/ma16196574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Currently, efficient utilization of low-grade thermal energy is a great challenge. Thermoelectricity is an extremely promising method of generating electrical energy from temperature differences. As a green energy conversion technology, thermo-electrochemical cells (TECs) have attracted much attention in recent years for their ability to convert thermal energy directly into electricity with high thermal power. Within TECs, anions and cations gain and lose electrons, respectively, at the electrodes, using the potential difference between the hot and cold terminals of the electrodes by redox couples. Additionally, the anions and cations therein are constantly circulating and mobile via concentration diffusion and thermal diffusion, providing an uninterrupted supply of power to the exterior. This review article focuses mainly on the operation of TECs and recent advances in redox couples, electrolytes, and electrodes. The outlook for optimization strategies regarding TECs is also outlined in this paper.
Collapse
Affiliation(s)
- Bingchen Huo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450003, China
| | - Fengxia Kuang
- Guangzhou Health Science College, Guangzhou 510925, China;
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
4
|
Zong Y, Chen L, Li X, Ding Q, Han W, Lou J. Highly robust and sensitive dual-network freeze-resistant organic hydrogel thermocells. Carbohydr Polym 2023; 314:120958. [PMID: 37173052 DOI: 10.1016/j.carbpol.2023.120958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Thermocells (TECs) are eco-friendly and ideal power-generation devices that sustainably convert waste heat into electricity to power wearable electronics. However, their poor mechanical properties, limited operating temperature, and low sensitivity limit their practical application. Hence, K3/4Fe(CN)6 and NaCl thermoelectric materials were introduced into a bacterial cellulose-reinforced polyacrylic acid double-network structure and permeated into a glycerol (Gly)/water binary solvent to prepare an organic thermoelectric hydrogel. The resulting hydrogel had a tensile strength of approximately 0.9 MPa and a stretched length of approximately 410 %; moreover, it worked stably even in the stretched/twisted state. Owing to the introduction of Gly and NaCl, the as-prepared hydrogel exhibited excellent freezing tolerance (- 22 °C). In addition, the TEC also demonstrated excellent sensitivity (~13 s). Good environmental stability and high sensitivity make this hydrogel TEC a promising candidate for thermoelectric power-generation/temperature-monitoring systems.
Collapse
Affiliation(s)
- Yudong Zong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Luzheng Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xia Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qijun Ding
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenjia Han
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiang Lou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
5
|
Jiang L, Horike S, Mukaida M, Kirihara K, Seki K, Wei Q. High-Performance Isotropic Thermo-Electrochemical Cells Using Agar-Gelled Ferricyanide/Ferrocyanide/Guanidinium. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200207. [PMID: 37287596 PMCID: PMC10242534 DOI: 10.1002/gch2.202200207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Indexed: 06/09/2023]
Abstract
An isotropic thermo-electrochemical cell is introduced with a high Seebeck coefficient (S e) of 3.3 mV K-1 that uses a ferricyanide/ferrocyanide/guanidinium-based agar-gelated electrolyte. A power density of about 20 µW cm-2 is achieved at a temperature difference of about 10 K, regardless of whether the heat source is on the top or bottom section of the cell. This behavior is very different from that of cells with liquid electrolytes, which exhibit high anisotropy, and for which high S e values are achieved only by heating the bottom electrode. The guanidinium-containing gelatinized cell does not exhibit steady-state operation, but its performance recovers when disconnected from the external load, suggesting that the observed power drop under load conditions is not due to device degeneration. The large S e value and isotropic properties can mean that the novel system represents a major advancement from the standpoint of harvesting of low-temperature heat, such as body heat and solar thermal heat.
Collapse
Affiliation(s)
- Lixian Jiang
- Nanomaterials Research InstituteDepartment of Materials and ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)1‐1‐1 HigashiTsukubaIbaraki305‐8565Japan
| | - Shohei Horike
- Department of Chemical Science and EngineeringGraduate School of EngineeringKobe University1‐1 Rokkodai‐choKobe657‐8501Japan
- PRESTOJapan Science and Technology AgencyKawaguchi332‐0012Japan
- Research Center for Membrane and Film TechnologyKobe University1‐1 Rokkodai‐choKobe657‐8501Japan
| | - Masakazu Mukaida
- Nanomaterials Research InstituteDepartment of Materials and ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)1‐1‐1 HigashiTsukubaIbaraki305‐8565Japan
| | - Kazuhiro Kirihara
- Nanomaterials Research InstituteDepartment of Materials and ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)1‐1‐1 HigashiTsukubaIbaraki305‐8565Japan
| | - Kazuhiko Seki
- GZRNational Institute of Advanced Industrial Science and Technology (AIST)16‐1 OnogawaTsukubaIbaraki305‐8569Japan
| | - Qingshuo Wei
- Nanomaterials Research InstituteDepartment of Materials and ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)1‐1‐1 HigashiTsukubaIbaraki305‐8565Japan
| |
Collapse
|
6
|
Gao W, Lei Z, Chen W, Chen Y. Hierarchically Anisotropic Networks to Decouple Mechanical and Ionic Properties for High-Performance Quasi-Solid Thermocells. ACS NANO 2022; 16:8347-8357. [PMID: 35452232 DOI: 10.1021/acsnano.2c02606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid growth of wearable systems demands sustainable, mechanically adaptable, and eco-friendly energy-harvesting devices. Quasi-solid ionic thermocells have demonstrated the capability of continuously converting low-grade heat into electricity to power wearable electronics. However, a trade-off between ion conductivity and mechanical properties is one of the most challenging obstacles for developing high-performance quasi-solid thermocells. Herein, the trade-off is overcome by designing anisotropic polymer networks to produce aligned channels for ion-conducting and hierarchically assembled crystalline nanofibrils for crack blunting. The ionic conductivity of the anisotropic thermocell has a more than 400% increase, and the power density is comparable to the record of state-of-the-art quasi-solid thermocells. Moreover, compared with the existing quasi-solid thermocells with the optimal mechanical performance, this material realizes biomimetic strain-stiffening and shows more than 1100% and 300% increases in toughness and strength, respectively. We believe this work provides a general method for developing high-performance, cost-effective, and durable thermocells and also expands the applicability of thermocells in wearable systems.
Collapse
Affiliation(s)
- Wei Gao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge 02138, Massachusetts, United States
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| | - Zhouyue Lei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge 02138, Massachusetts, United States
| | - Wenwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Yongping Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
7
|
Trosheva MA, Buckingham MA, Aldous L. Direct measurement of the genuine efficiency of thermogalvanic heat-to-electricity conversion in thermocells. Chem Sci 2022; 13:4984-4998. [PMID: 35655863 PMCID: PMC9068204 DOI: 10.1039/d1sc06340e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Harvesting wasted thermal energy could make important contributions to global energy sustainability. Thermogalvanic devices are simple, chemistry-based devices which can convert heat to electricity, through facile redox chemistry. The efficiency of this process is the ratio of electrical energy generated by the cell (in Watts) to the quantity of thermal energy that passes through the cell (also in Watts). Prior work estimated the quantity of thermal energy passed through a thermocell by applying a conductive heat transfer model to the electrolyte. Here, we employ a heat flux sensor to unambiguously quantify both heat flux and electrical power. By evaluating the effect of electrode separation, temperature difference and gelation of the electrolyte, we found significant discrepancy between the estimated model and the quantified reality. For electrode separation, the trend between estimated and measured efficiency went in opposite directions; as a function of temperature difference, they demonstrated the same trend, but estimated values were significantly higher. This was due to significant additional convection and radiation contributions to the heat flux. Conversely, gelled electrolytes were able to suppress heat flux mechanisms and achieve experimentally determined efficiency values in excess of the estimated values (at small electrode separations), with partially gelled systems being particularly effective. This study provides the ability to unambiguously benchmark and assess the absolute efficiency and Carnot efficiency of thermogalvanic electrolytes and even the whole thermocell device, allowing 'total device efficiency' to be quantified. The deviation between the routinely applied estimation methodology and actual measurement will support the rational development of novel thermal energy harvesting chemistries, materials and devices.
Collapse
Affiliation(s)
- Maria A Trosheva
- Department of Chemistry, King's College London Britannia House London SE1 1DB UK
| | - Mark A Buckingham
- Department of Chemistry, King's College London Britannia House London SE1 1DB UK
| | - Leigh Aldous
- Department of Chemistry, King's College London Britannia House London SE1 1DB UK
| |
Collapse
|
8
|
Peng P, Zhou J, Liang L, Huang X, Lv H, Liu Z, Chen G. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells. NANO-MICRO LETTERS 2022; 14:81. [PMID: 35333992 PMCID: PMC8956784 DOI: 10.1007/s40820-022-00824-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The design of power supply systems for wearable applications requires both flexibility and durability. Thermoelectrochemical cells (TECs) with large Seebeck coefficient can efficiently convert low-grade heat into electricity, thus having attracted considerable attention in recent years. Utilizing hydrogel electrolyte essentially addresses the electrolyte leakage and complicated packaging issues existing in conventional liquid-based TECs, which well satisfies the need for flexibility. Whereas, the concern of mechanical robustness to ensure stable energy output remains yet to be addressed. Herein, a flexible quasi-solid-state TEC is proposed based on the rational design of a hydrogel electrolyte, of which the thermogalvanic effect and mechanical robustness are simultaneously regulated via the multivalent ions of a redox couple. The introduced redox ions not only endow the hydrogel with excellent heat-to-electricity conversion capability, but also act as ionic crosslinks to afford a dual-crosslinked structure, resulting in reversible bonds for effective energy dissipation. The optimized TEC exhibits a high Seebeck coefficient of 1.43 mV K-1 and a significantly improved fracture toughness of 3555 J m-2, thereby can maintain a stable thermoelectrochemical performance against various harsh mechanical stimuli. This study reveals the high potential of the quasi-solid-state TEC as a flexible and durable energy supply system for wearable applications.
Collapse
Affiliation(s)
- Peng Peng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Jiaqian Zhou
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Lirong Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Xuan Huang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Haicai Lv
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhuoxin Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
9
|
Liu Y, Zhang S, Beirne S, Kim K, Qin C, Du Y, Zhou Y, Cheng Z, Wallace GG, Chen J. Wearable Photo-Thermo-Electrochemical Cells (PTECs) Harvesting Solar Energy. Macromol Rapid Commun 2022; 43:e2200001. [PMID: 35065001 DOI: 10.1002/marc.202200001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/14/2022] [Indexed: 11/11/2022]
Abstract
Solar induced thermal energy is a vital heat source supplementing body heat to realize thermo-to-electric energy supply for wearable electronics. Thermo-electrochemical cells (TECs), compared to the widely investigated thermoelectric generators (TEGs), show greater potential in wearable applications due to the higher voltage output from low-grade heat and the increased option range of cheap and flexible electrode/electrolyte materials. In this work, a wearable photo-thermo-electrochemical cell (PTEC) is firstly fabricated through the introduction of a polymer-based flexible photothermal film as a solar-absorber and hot electrode, followed by a systematic investigation of wearable device design. The as-prepared PTEC single device shows outstanding output voltage and current density of 15.0 mV and 10.8 A m-2 , 7.1 mV and 8.57 A m-2 , for the device employing p-type and n-type gel electrolytes, respectively. Benefiting from the equivalent performance in current density, a series connection containing 18 pairs of p-n PTEC devices is effectively made, which can harvest solar energy and charge supercapacitors to above 250 mV (1 sun solar illumination). Meanwhile, a watch-strap shaped flexible PTECs (8 p-n pairs) that can be worn on a wrist is fabricated, and the realised voltage above 150 mV under light shows the potential for use in wearable applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuqing Liu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shuai Zhang
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Stephen Beirne
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Kyuman Kim
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Chunyan Qin
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Yumeng Du
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Yuetong Zhou
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Jun Chen
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| |
Collapse
|
10
|
Zhang S, Zhou Y, Liu Y, Wallace GG, Beirne S, Chen J. All-polymer wearable thermoelectrochemical cells harvesting body heat. iScience 2021; 24:103466. [PMID: 34927022 PMCID: PMC8649731 DOI: 10.1016/j.isci.2021.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 11/12/2021] [Indexed: 11/06/2022] Open
Abstract
Wearable thermoelectrochemical cells have attracted increasing interest due to their ability to turn human body heat into electricity. Here, we have fabricated a flexible, cost-effective, and 3D porous all-polymer electrode on an electrical conductive polymer substrate via a simple 3D printing method. Owing to the high degree of electrolyte penetration into the 3D porous electrode materials for redox reactions, the all-polymer based porous 3D electrodes deliver an increased power output of more than twice that of the film electrodes under the same mass loading using either n-type or p-type gel electrolytes. To realize the practical application of our thermocell, we fabricated 18 pairs of n-p devices through a series connection of single devices. The strap shaped thermocell arrangement was able to charge up a commercial supercapacitor to 0.27 V using the body heat of the person upon which it was being worn and in turn power a typical commercial lab timer. A compatible high electrical conductivity polymer film works as underlying substrate 3D printable polymer ink with suitable rheological properties A serial 18 pairs of n-p devices charged supercapacitor to power a lab timer 3D-printed all-polymer electrode thermocell device for harvesting body heat
Collapse
Affiliation(s)
- Shuai Zhang
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yuetong Zhou
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yuqing Liu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Gordon G Wallace
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Stephen Beirne
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jun Chen
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|