1
|
Li G, Wang B, Li L, Li X, Yan R, Liang J, Zhou X, Li L, Zhou Z. H-rGO-Pd NPs Nanozyme Enhanced Silver Deposition Strategy for Electrochemical Detection of Glypican-3. Molecules 2023; 28:molecules28052271. [PMID: 36903516 PMCID: PMC10004744 DOI: 10.3390/molecules28052271] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Glypican-3 (GPC3), as an emerging biomarker, has been shown to be beneficial for the early diagnosis and treatment of hepatocellular carcinoma (HCC). In this study, an ultrasensitive electrochemical biosensor for GPC3 detection has been constructed based on the hemin-reduced graphene oxide-palladium nanoparticles (H-rGO-Pd NPs) nanozyme-enhanced silver deposition signal amplification strategy. When GPC3 specifically interacted with GPC3 antibody (GPC3Ab) and GPC3 aptamer (GPC3Apt), an "H-rGO-Pd NPs-GPC3Apt/GPC3/GPC3Ab" sandwich complex was formed with peroxidase-like properties which enhanced H2O2 to reduce the silver (Ag) ions in solution to metallic Ag, resulting in the deposition of silver nanoparticles (Ag NPs) on the surface of the biosensor. The amount of deposited Ag, which was derived from the amount of GPC3, was quantified by the differential pulse voltammetry (DPV) method. Under ideal circumstances, the response value was linearly correlated with GPC3 concentration at 10.0-100.0 μg/mL with R2 of 0.9715. When the GPC3 concentration was in the range from 0.01 to 10.0 μg/mL, the response value was logarithmically linear with the GPC3 concentration with R2 of 0.9941. The limit of detection was 3.30 ng/mL at a signal-to-noise ratio of three and the sensitivity was 1.535 μAμM-1cm-2. Furthermore, the electrochemical biosensor detected the GPC3 level in actual serum samples with good recoveries (103.78-106.52%) and satisfactory relative standard deviations (RSDs) (1.89-8.81%), which confirmed the applicability of the sensor in practical applications. This study provides a new analytical method for measuring the level of GPC3 in the early diagnosis of HCC.
Collapse
Affiliation(s)
- Guiyin Li
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, China
| | - Bo Wang
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ling Li
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xinhao Li
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruijie Yan
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jintao Liang
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xinchun Zhou
- Guangdi Maoming Chemical Co., Ltd., Maoming High-Tech Industrial Development Zone, Maoming 525000, China
- Correspondence: (X.Z.); (L.L.); (Z.Z.)
| | - Liuxun Li
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (X.Z.); (L.L.); (Z.Z.)
| | - Zhide Zhou
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Correspondence: (X.Z.); (L.L.); (Z.Z.)
| |
Collapse
|
2
|
Funo S, Sato F, Cai Z, Chang G, He Y, Oyama M. Codeposition of Platinum and Gold on Nickel Wire Electrodes via Galvanic Replacement Reactions for Electrocatalytic Oxidation of Alcohols. ACS OMEGA 2021; 6:18395-18403. [PMID: 34308070 PMCID: PMC8296713 DOI: 10.1021/acsomega.1c02393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Codeposition of Pt and Au on Ni wire was performed using a simple treatment of immersing Ni wire in aqueous solutions containing both K2PtCl4 and HAuCl4. For evaluating the electrochemical properties of the thus-prepared electrodes, cyclic voltammograms (CVs) of 1.0 M ethanol in 1.0 M NaOH aqueous solutions were recorded. Compared with Pt- or Au-deposited Ni wire electrodes prepared by treating Ni wire in aqueous solutions of a single component, e.g., 1.0 mM K2PtCl4 or 1.0 mM HAuCl4, a noteworthy increase in the electrocatalytic current was observed for the oxidation of ethanol with a PtAu-codeposited Ni (PtAu/Ni) wire electrode even when it was prepared in an aqueous solution containing both 0.10 mM K2PtCl4 and 0.10 mM HAuCl4. In addition, the shape and the peak potentials of CVs recorded using PtAu/Ni wire electrodes were found to be different from those recorded with the Pt- or Au-deposited Ni wire electrodes. Because the CV responses typical of the PtAu/Ni wire electrodes were observed even when a PtAu/Ni wire electrode was prepared in an aqueous solution containing both 0.010 mM K2PtCl4 and 1.0 mM HAuCl4, it is considered that a small amount of Pt was effectively modified or incorporated and affected the electrochemical properties significantly. The CV results for ethanol oxidation were compared with those for the electrocatalytic oxidations of methanol, 1-propanol, and 2-propanol. Besides, the CV results recorded with the present PtAu/Ni wire electrodes are discussed in comparison with some previous results obtained using other PtAu nanoelectrocatalysts.
Collapse
Affiliation(s)
- Sota Funo
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Fumikazu Sato
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Zhiwei Cai
- Ministry-of-Education
Key Laboratory for the Green Preparation and Application of Functional
Materials, Hubei Key Laboratory of Polymer Materials, School of Materials
Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062, China
| | - Gang Chang
- Ministry-of-Education
Key Laboratory for the Green Preparation and Application of Functional
Materials, Hubei Key Laboratory of Polymer Materials, School of Materials
Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062, China
| | - Yunbin He
- Ministry-of-Education
Key Laboratory for the Green Preparation and Application of Functional
Materials, Hubei Key Laboratory of Polymer Materials, School of Materials
Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062, China
| | - Munetaka Oyama
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| |
Collapse
|