1
|
Wang Q, Ren S, Hu S, Li X, Wang K, He W. Thermal decomposition synthesis of CuO on TiO 2 NTs as promising photocatalysts for effective photoelectrocatalytic hydrogen evolution and pollutant removal. ENVIRONMENTAL RESEARCH 2025; 268:120780. [PMID: 39778616 DOI: 10.1016/j.envres.2025.120780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
The preparation strategy is the important factor to obtain the effective photocatalyst, and the thermal decomposition could be used to prepare photocatalysts with high crystallinity and photoactivity. In this paper, thermal decomposition method was used to deposit CuO nanoparticles on TiO2 nanotube arrays (TiO2 NTs), and the TiO2 NTs/CuO exhibited remarkably high visible light absorption and photoelectrocatalytic performances toward dye degradation and Cr(VI) reduction. The potential degradation pathway and toxicities of rhodamine B (RhB) dyes and intermediates were investigated. Moreover, the high photoelectric conversion with visible light photocurrent of 25.94 μA/cm2 and interface photovoltage of -0.12 V was produced, and the visible light-induced photoelectrocatalytic water splitting performance was outstanding. The mechanisms of hybrid photocatalyst preparation and photocatalytic progress were analyzed, and the p-n heterojunction was the decisive factor of the excellent photocatalytic property. The preparation strategy of TiO2 NTs/CuO provides the reference and guidance for the effective photocatalysts used in industrial waste water remediation and new energy generation.
Collapse
Affiliation(s)
- Qingyao Wang
- College of Civil Engineering, Hefei University of Technology, Hefei, 238000, China; Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei, 238000, China; Chinaland Solar Energy Co., Ltd., Hefei, 238000, China
| | - Shuaiqi Ren
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei, 238000, China
| | - Shen Hu
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei, 238000, China
| | - Xiaoru Li
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei, 238000, China
| | - Kesheng Wang
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei, 238000, China; Chinaland Solar Energy Co., Ltd., Hefei, 238000, China.
| | - Wei He
- College of Civil Engineering, Hefei University of Technology, Hefei, 238000, China; Chinaland Solar Energy Co., Ltd., Hefei, 238000, China.
| |
Collapse
|
2
|
Ciobotaru IA, Ismail FB, Budei R, Cojocaru A, Vaireanu DI. The Effect of Anodization and Thermal Treatment on Mixed-Oxide Layer Formation on Ti–Zr Alloy. COATINGS 2024; 14:1217. [DOI: 10.3390/coatings14091217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The anodization or thermal treatments applied to alloys of titanium and zirconium have a substantiated effect on the mixed-oxide layer formation compared to the naturally occurring one. A Ti–Zr 50%/50% alloy was chosen for a comparative study. Controlled, thermally treated, and anodized samples obtained with controlled procedures were analyzed in terms of morphological and compositional analysis (using SEM and EDX analysis) as well as for the determination of hardness variations. Substantial differences were observed depending on the applied functionalization method (compact of structured mixed-oxide nanotubes when the samples are subjected to the anodization procedure); there was an increase of more than six folds in the mixed-oxide layer hardness and D Shore scale, when subjected to thermal treatment, and hence, this lead to the conclusion that one may control the morphology, composition and/or the hardness of the mixed-oxide layer by applying one or another or a combination of functionalization methods.
Collapse
Affiliation(s)
- Ioana-Alina Ciobotaru
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology, 011061 Bucharest, Romania
| | - Fidan Bahtiar Ismail
- Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila Buchares, 020021 Bucharest, Romania
| | - Roxana Budei
- Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila Buchares, 020021 Bucharest, Romania
- Dentix Millennium SRL, 087153 Sabareni, Romania
| | - Anca Cojocaru
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology, 011061 Bucharest, Romania
| | - Danut-Ionel Vaireanu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology, 011061 Bucharest, Romania
- Technical Sciences Academy of Romania, 030167 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| |
Collapse
|
3
|
Palma DPDS, Silva GP, Zago FM, Codaro EN, Acciari HA. Characterization of modified titanium surfaces by anodisation and immersion tests. Heliyon 2024; 10:e28144. [PMID: 38560141 PMCID: PMC10979049 DOI: 10.1016/j.heliyon.2024.e28144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
This paper explores the features of both nanoporous and compact TiO2 films formed by titanium anodisation in two experimental conditions, given that they have completely different morphologies and properties than those found by our previous studies. After anodisation, samples have been subjected for 20 days to immersion tests in different media (H2O, H3PO4, and KOH). Surface morphology, phase composition and wettability of anodised films were investigated using FESEM, FTIR, Raman spectroscopy, contact angle measurements and XPS, and the hydrophilicity of modified surfaces was investigated by immersion tests. Nanoporous films exhibited hydrophobic surfaces, but contact angle values gradually decreased after immersing films in H2O, H3PO4 and KOH media, respectively. However, compact films produced superhydrophilic surfaces, both before and after immersion tests, with the exception of immersing the film in a H3PO4 medium due to film removal by acid attack. As for compact films, an unusual morphology revealed by the presence of cone-shaped particles might be responsible for the adsorption of -OH groups arranged so as to favour anatase phase formation.
Collapse
Affiliation(s)
- Dener Pedro da Silva Palma
- São Paulo State University (Unesp), School of Engineering and Sciences, Department of Chemistry and Energy, Guaratinguetá, SP, 12516-410, Brazil
| | - Giovana Pedroso Silva
- São Paulo State University (Unesp), School of Engineering and Sciences, Department of Chemistry and Energy, Guaratinguetá, SP, 12516-410, Brazil
| | - Fernanda Mathidios Zago
- São Paulo State University (Unesp), School of Engineering and Sciences, Department of Chemistry and Energy, Guaratinguetá, SP, 12516-410, Brazil
| | - Eduardo Norberto Codaro
- São Paulo State University (Unesp), School of Engineering and Sciences, Department of Chemistry and Energy, Guaratinguetá, SP, 12516-410, Brazil
| | - Heloisa Andréa Acciari
- São Paulo State University (Unesp), School of Engineering and Sciences, Department of Chemistry and Energy, Guaratinguetá, SP, 12516-410, Brazil
| |
Collapse
|
4
|
Zhang F, Sun Y, Li M, Wang Q, Song W, Ma J, Hou J. Solvothermal preparation of hydrangea-like CuBi2O4 twining TiO2 NTAs with enhanced photoelectrocatalytic dye degradation and hydrogen generation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Zhao Z, Wang S, Zhang J, Liu L, Jiang L, Xu X, Song Y. A phosphoric anion layer inhibits electronic current generation and nanotube growth during anodization of titanium. NANOSCALE ADVANCES 2022; 4:4597-4605. [PMID: 36341295 PMCID: PMC9595191 DOI: 10.1039/d2na00433j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Nowadays the formation mechanism of anodic TiO2 nanotubes has attracted extensive attention. Field-assisted dissolution (TiO2 + 6F- + 4H+ → [TiF6]2- + 2H2O) has been considered as the causal link to the formation and growth of nanotubes. But it is hard for this theory to explain three stages of the current-time curve. Here, the anodization of titanium was studied by adding different concentrations of H3PO4 (0%, 4 wt%, 6 wt%, 8 wt%, and 10 wt%) in ethylene glycol containing the same concentration of NH4F (0.5 wt%). The results prove that under the action of the same concentration of NH4F, the growth rate of nanotubes decreases obviously with the increase of H3PO4 concentration, and the second stage of the current-time curve is also prolonged simultaneously. These experimental facts cannot be interpreted by field-assisted dissolution theory and the viscous flow model. Here, an anion layer formed by H3PO4 and the electronic current theory are ably used to explain these facts reasonably for the first time.
Collapse
Affiliation(s)
- Ziyu Zhao
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Shiyi Wang
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Jiazheng Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Lin Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Longfei Jiang
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Xiangyue Xu
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Ye Song
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
6
|
Kokubo Y, Asoh H. Two-step bipolar anodization: Design of titanium with two different faces. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
7
|
Lin Y, Qian Q, Chen Z, Dinh Tuan P, Feng D. Fabrication of high specific surface area TiO2 nanopowders by anodization of porous titanium. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
8
|
Jiang L, Zhang J, Chen B, Zhang S, Zhang Z, Wan W, Song Y. Morphological comparison and growth mechanism of TiO2 nanotubes in HBF4 and NH4F electrolytes. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
9
|
Li X, Zhang Y, Gao L, Ma J, Qiu Y, Xu X, Ou J, Ma W. The growth rate of nanotubes and the quantity of charge during anodization. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2021.107184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
10
|
Guo T, Tian R, Wei A, Zhang W, Liu Y. Effect of Ti rolling process on the enhanced interfacial adhesion between TiO2 and underlying Ti substrate. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
11
|
Yu H, Chen J, Zhang S, Yu Y, Wang S, Ye M. Effects of electrolyte composition on the growth and properties of titanium oxide nanotubes. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
12
|
Li P, Wang H, Ni Y, Song Y, Sun M, Gong T, Li C, Zhu X. Unraveling the six stages of the current-time curve and the bilayer nanotubes obtained by one-step anodization of Zr. NANOSCALE ADVANCES 2022; 4:582-589. [PMID: 36132686 PMCID: PMC9419485 DOI: 10.1039/d1na00692d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/05/2021] [Indexed: 06/16/2023]
Abstract
The application and growth mechanism of anodic TiO2 nanotubes have been a hot topic in the last ten years, but the formation mechanism of anodic ZrO2 nanotubes has rarely been studied. In one-step constant voltage anodization of Al and Ti, the typical current-time curve has three stages. Moreover, the current-time curves of the three stages can last for 10 min or even 10 hours, resulting in a single layer of nanotubes with the same diameter due to the constant voltage in one-step anodization. However, in this paper, it was found for the first time that the three stages of the current-time curve appeared twice in succession during one-step constant voltage anodization of Zr for only 900 seconds, and bilayer nanotubes with increased diameter were obtained. This six-stage current-time curve cannot be explained by classical field-assisted dissolution and field-assisted flow or stress-driven mechanisms. Here, the formation mechanism and growth kinetics of bilayer ZrO2 nanotubes have been clarified rationally by the theories of ionic current, electronic current and oxygen bubble mold. The interesting results presented in this paper are of great significance for revealing the anodizing process of various metals and the formation mechanism of porous structures.
Collapse
Affiliation(s)
- Pengze Li
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Heng Wang
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Yilin Ni
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Ye Song
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Ming Sun
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Tianle Gong
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Chengyuan Li
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Xufei Zhu
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
13
|
Gong T, Chen J, Fang P, Liu L, Li C, Han A, Song Y. Debunking the essential effect of temperature and voltage on the current curve and the nanotube morphology. RSC Adv 2021; 12:429-436. [PMID: 35424478 PMCID: PMC8978680 DOI: 10.1039/d1ra06694c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
The formation mechanism of anodic TiO2 nanotubes remains to be unclear till now. Many researchers study the influence of temperatures above 0 °C instead of below 0 °C. Few papers before have explained the relationship between the current-time curve and the morphology of the nanotubes. In this study, the innovative 'oxygen bubble model' and the ionic current and electronic current theories were introduced to explain the growth of nanotubes below 0 °C. The length of anodic TiO2 nanotubes at 15 °C, 0 °C, -10 °C were 1.28 μm, 0.93 μm and 0.21 μm, respectively, but the diameter of anodic TiO2 nanotubes was almost the same, at about 164 nm. When the temperature was low, the magnitude of electronic current and the ionic current was small, the mold effect was weak and nanotubes could not be formed. At the same time, this study shows that the dissolution reaction of the field-assisted solution theory has no electron gain or loss, and it has nothing to do with the current, which negates the field-assisted dissolution theory. A novel two-step anodization was used to verify the conclusion. It was found that nanotubes could be obtained when the anodizing current was decreasing or increasing. Also, ginseng-shaped nanotubes are formed at a particular voltage sequence. Based on the 'oxygen bubble model' and the ionic current and electronic current theories, the formation process of nanotubes of two-step anodization is explained clearly.
Collapse
Affiliation(s)
- Tianle Gong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Jieda Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Pengjin Fang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Lin Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Chengyuan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Aijun Han
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Ye Song
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
14
|
Li P, Wang J, Liu L, Ma J, Ni Y, Wang H, Song Y. The effect of atmospheric pressure on the growth rate of TiO2 nanotubes: Evidence against the field-assisted dissolution theory. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
15
|
Gong T, Li C, Li X, Yue H, Zhu X, Zhao Z, Lv R, Zhu J. Evidence of oxygen bubbles forming nanotube embryos in porous anodic oxides. NANOSCALE ADVANCES 2021; 3:4659-4668. [PMID: 36134301 PMCID: PMC9417053 DOI: 10.1039/d1na00389e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/23/2021] [Indexed: 05/17/2023]
Abstract
Anodic TiO2 nanotubes have been studied widely for two decades because of their regular tubular structures and extensive applications. However, the formation mechanism of anodic TiO2 nanotubes remains unclear, because it is difficult to find convincing evidence for popular field-assisted dissolution or field-assisted injection theories and the oxygen bubble model. Here, in a bid to find direct evidence that oxygen bubbles form nanotube embryos, a new method is applied to handle this challenge. Before nanotube formation, a dense cover layer was formed to make nanotubes grow more slowly. Many completely enclosed nanotube embryos formed by oxygen bubbles were found beneath the dense cover layer for the first time. The formation of these enclosed and hollow gourd-shaped embryos is convincing enough to prove that the nanotubes are formed by the oxygen bubble mold, similar to inflating a football, rather than by field-assisted dissolution. Based on the 'oxygen bubble model' and ionic current and electronic current theories, the formation and growth process of nanotube embryos is explained clearly for the first time. These interesting findings indicate that the 'oxygen bubble model' and ionic current and electronic current theories also apply to anodization of other metals.
Collapse
Affiliation(s)
- Tianle Gong
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Chengyuan Li
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Xin Li
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Hangyu Yue
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Xufei Zhu
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Ziyu Zhao
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Renquan Lv
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| | - Junwu Zhu
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
16
|
Debunking the formation mechanism of nanopores in four kinds of electrolytes without fluoride ion. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
17
|
Zhang J, Yu Y, Fang P, Liu L, Yue H, Ou J, Han A. Anodization of aluminum in a sealed container. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107086] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
18
|
Lu N, Zhang J, Dan Y, Sun M, Gong T, Li X, Zhu X. Growth of porous anodic TiO2 in silver nitrate solution without fluoride: Evidence against the field-assisted dissolution reactions of fluoride ions. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|