1
|
Li M, Zhang Y, Gao D, Li Y, Yu C, Fang Y, Huang Y, Tang C, Guo Z. Prediction of M 3 B 4 -type MBenes as Promising Catalysts for CO 2 Capture and Reduction. Chemphyschem 2024; 25:e202300837. [PMID: 38225754 DOI: 10.1002/cphc.202300837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/17/2024]
Abstract
The rational design of novel catalysts with high activity and selectivity for carbon dioxide reduction reaction (CO2 RR) is highly desired. In this work, we have extensive investigations on the properties of two-dimensional transition metal borides (MBenes) to achieve efficient CO2 capture and reduction through first-principles calculations. The results show that all the investigated M3 B4 -type MBene exhibit remarkable CO2 capture and activation abilities, which proved to be derived from the lone pair of electrons on the MBene surface. Then, we emphasize that the investigated MBenes can further selectively reduce activated CO2 to CH4 . Moreover, a new linear scaling relationship of the adsorption energies of potential-determining intermediates (*OCH2 O and *HOCH2 O) versus ΔG(*OCHO) has been established, where the CO2 RR limiting potentials on MBenes are determined by the different fitting slopes of ΔG(*OCH2 O) and ΔG(*HOCHO), allowing significantly lower limiting potentials to be achieved compared to transition metals. Especially, two promising CO2 RR catalysts (Mo3 B4 and Cr3 B4 MBene) exist quite low limiting potentials of -0.48 V and -0.66 V, as well as competitive selectivity concerning hydrogen evolution reactions have been identified. Our research results make future advances in CO2 capture by MBenes easier and exploit the applications of Mo3 B4 and Cr3 B4 MBenes as novel CO2 RR catalysts.
Collapse
Affiliation(s)
- Mingxia Li
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
| | - Yaoyu Zhang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
| | - Dongyue Gao
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
| | - Ying Li
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
| | - Chao Yu
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
| | - Yi Fang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
| | - Yang Huang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
| | - Chengchun Tang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
| | - Zhonglu Guo
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
| |
Collapse
|
2
|
Ren T, Miao Z, Ren L, Xie H, Li Q, Xia C. Nanostructure Engineering of Sn-Based Catalysts for Efficient Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205168. [PMID: 36399644 DOI: 10.1002/smll.202205168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Excessive anthropogenic CO2 emission has caused a series of ecological and environmental issues, which threatens mankind's sustainable development. Mimicking the natural photosynthesis process (i.e., artificial photosynthesis) by electrochemically converting CO2 into value-added products is a promising way to alleviate CO2 emission and relieve the dependence on fossil fuels. Recently, Sn-based catalysts have attracted increasing research attentions due to the merits of low price, abundance, non-toxicity, and environmental benignancy. In this review, the paradigm of nanostructure engineering for efficient electrochemical CO2 reduction (ECO2 R) on Sn-based catalysts is systematically summarized. First, the nanostructure engineering of size, composition, atomic structure, morphology, defect, surficial modification, catalyst/substrate interface, and single-atom structure, are systematically discussed. The influence of nanostructure engineering on the electronic structure and adsorption property of intermediates, as well as the performance of Sn-based catalysts for ECO2 R are highlighted. Second, the potential chemical state changes and the role of surface hydroxides on Sn-based catalysts during ECO2 R are introduced. Third, the challenges and opportunities of Sn-based catalysts for ECO2 R are proposed. It is expected that this review inspires the further development of highly efficient Sn-based catalysts, meanwhile offer protocols for the investigation of Sn-based catalysts.
Collapse
Affiliation(s)
- Tiyao Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| | - Zhengpei Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Huan Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| |
Collapse
|