1
|
Wang YY, Shi H, Gong Y, Zhang B, Zhao B, Li R, Cronin SB. Measuring Local p Ka and pH Using Surface Enhanced Raman Spectroscopy of 4-Mercaptobenzoic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16807-16811. [PMID: 37956213 DOI: 10.1021/acs.langmuir.3c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We report spectroscopic measurements of the local pH and pKa at an electrode/electrolyte interface using surface enhanced Raman scattering (SERS) spectroscopy of 4-mercaptobenzoic acid (4-MBA). In acidic and basic solutions, the protonated and deprotonated carboxyl functional groups at the electrode surface exist in the solution as -COOH and -COO-, which have different Raman active vibrational features at around 1697 and 1414 cm-1, respectively. In pH neutral water, as the applied electrochemical potential is varied from negative to positive, the acidic form of the 4-MBA (i.e., -COOH) decreases in Raman intensity and the basic form (i.e., -COO-) increases in Raman intensity. The change in local ion concentration is due to the application of electrochemical potentials and the accumulation of ions near the electrode surface. Under various applied potentials, the ratio of 1697 and 1587 cm-1 (pH-independent) peak areas spans the range between 0.7 and 0, and the ratio of the 1414 and 1587 cm-1 peak areas ranges from 0 to 0.3. By fitting these data to a normalized sigmoid function, we obtain the percentage of surface protonation/deprotonation, which can be related to the pKa and pH of the system. Thus, we can measure the local pKa at the electrode surface using the surface enhanced Raman signal of the 4-MBA.
Collapse
Affiliation(s)
- Yu Yun Wang
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Haotian Shi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yichen Gong
- Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Boxin Zhang
- Department of Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Bofan Zhao
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ruoxi Li
- Department of Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Stephen B Cronin
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Niu B, Wang Z, Wu J, Cai J, An Z, Sun J, Li Y, Huang S, Lu N, Xie Q, Zhao G. Photoelectrocatalytic selective removal of group-targeting thiol-containing heterocyclic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131307. [PMID: 37023579 DOI: 10.1016/j.jhazmat.2023.131307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
The removal of a class of toxic thiol-containing heterocyclic pollutants from complex water matrices has great environmental significance. In this study, a novel photoanode (Au/MIL100(Fe)/TiO2) with dual recognition functions was designed for selective group-targeting photoelectrocatalytic removal of thiol-containing heterocyclic pollutants from various aquatic systems. The average degradation and adsorption removal efficiency of 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and 2-mercaptobenzoxazole were still above 96.7% and 13.5% after selective treatment with Au/MIL100(Fe)/TiO2 even coexisting with 10-fold concentration of macromolecular interferents (sulfide lignin and natural organic matters) and the same concentration of micromolecular structural analogues. While they were below 71.6% and 3.9% after non-selective treatment with TiO2. Targets in the actual system were selectively removed to 0.9 µg L-1, which is 1/10 of that after non-selective treatment. FTIR, XPS and operando electrochemical infrared results proved that the highly specific recognition mechanism was mainly attributable to both the size screening of MIL100(Fe) toward targets and Au-S bond formed between -SH group of targets and Au of Au/MIL100(Fe)/TiO2. •OH are the reactive oxygen species. The degradation mechanism was further investigated via excitation-emission matrix fluorescence spectroscopy and LC-MS. This study provides new guidelines for the selective group-targeting removal of toxic pollutants with characteristic functional groups from complex water matrices.
Collapse
Affiliation(s)
- Baoling Niu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiming Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianwei Wu
- Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Junzhuo Cai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ziwen An
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jie Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanbo Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuyu Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ning Lu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qihao Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guohua Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Sheyfer D, Mariano RG, Kawaguchi T, Cha W, Harder RJ, Kanan MW, Hruszkewycz SO, You H, Highland MJ. Operando Nanoscale Imaging of Electrochemically Induced Strain in a Locally Polarized Pt Grain. NANO LETTERS 2023; 23:1-7. [PMID: 36541700 DOI: 10.1021/acs.nanolett.2c01015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing new methods that reveal the structure of electrode materials under polarization is key to constructing robust structure-property relationships. However, many existing methods lack the spatial resolution in structural changes and fidelity to electrochemical operating conditions that are needed to probe catalytically relevant structures. Here, we combine a nanopipette electrochemical cell with three-dimensional X-ray Bragg coherent diffractive imaging to study how strain in a single Pt grain evolves in response to applied potential. During polarization, marked changes in surface strain arise from the Coulombic attraction between the surface charge on the electrode and the electrolyte ions in the electrochemical double layers, while the strain in the bulk of the crystal remains unchanged. The concurrent surface redox reactions have a strong influence on the magnitude and nature of the strain changes under polarization. Our studies provide a powerful blueprint to understand how structural evolution influences electrochemical performance at the nanoscale.
Collapse
Affiliation(s)
- Dina Sheyfer
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ruperto G Mariano
- Department of Chemistry, Stanford University, Stanford, California94305, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02141, United States
| | - Tomoya Kawaguchi
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Institute for Materials Research, Tohoku University, Sendai, 9808577, Japan
| | - Wonsuk Cha
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ross J Harder
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Stephan O Hruszkewycz
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Hoydoo You
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew J Highland
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| |
Collapse
|
4
|
Tao CP, Jiang CC, Wang YH, Zheng JF, Shao Y, Zhou XS. Single-Molecule Sensing of Interfacial Acid-Base Chemistry. J Phys Chem Lett 2020; 11:10023-10028. [PMID: 33179941 DOI: 10.1021/acs.jpclett.0c03010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bronsted acid and base interactions are a cornerstone of chemistry describing a wide range of chemical phenomena. However, probing such interaction at the solid-liquid interface to extract the elementary and intrinsic information at a single-molecule level remains a big challenge. Herein, we employ an STM break junction (STM-BJ) technique to investigate the acid-base chemistry of carboxylic acid-based molecules at a Au (111) model surface and propose a prototype of a single-molecule pH sensor for the first time. The single-molecule measurements in different environmental conditions verify that the formation probability of molecular junctions is determined by the populations of deprotonated -COO- form in a self-assembled monolayer. Furthermore, the variation of the intensity of the conductance peaks (i.e., junction-forming probability) with the pH of the bulk solution fits well to the Henderson-Hasselbalch type equation. From the equation, a good linear relation is found between the degree of dissociation of the immobilized -COOH group and the environmental pH, providing a feasible way to design chemicals and biosensors and a detector at the single-molecule scale.
Collapse
Affiliation(s)
- Cai-Ping Tao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Chen-Chen Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Hoang TTH, Cohen Y, Gewirth AA. In Situ Electrochemical Stress Measurements Examining the Oxygen Evolution Reaction in Basic Electrolytes. Anal Chem 2014; 86:11290-7. [DOI: 10.1021/ac5030717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thao T. H. Hoang
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Yair Cohen
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
- Department
of Chemistry, Nuclear Research Center-Negev, Beer-Sheva 84190 Israel
| | - Andrew A. Gewirth
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| |
Collapse
|
6
|
Ramírez EA, Cortés E, Rubert AA, Carro P, Benítez G, Vela ME, Salvarezza RC. Complex surface chemistry of 4-mercaptopyridine self-assembled monolayers on Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6839-6847. [PMID: 22497438 DOI: 10.1021/la204951u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The adsorption of 4-mercaptopyridine on Au(111) from aqueous or ethanolic solutions is studied by different surface characterization techniques and density functional theory calculations (DFT) including van der Waals interactions. X-ray photoelectron spectroscopy and electrochemical data indicate that self-assembly from 4-mercaptopyridine-containing aqueous 0.1 M NaOH solutions for short immersion times (few minutes) results in a 4-mercaptopyridine (PyS) self-assembled monolayer (SAM) with surface coverage 0.2. Scanning tunneling microscopy images show an island-covered Au surface. The increase in the immersion time from minutes to hours results in a complete SAM degradation yielding adsorbed sulfur and a heavily pitted Au surface. Adsorbed sulfur is also the main product when the self-assembly process is made in ethanolic solutions irrespective of the immersion time. We demonstrate for the first time that a surface reaction is involved in PyS SAM decomposition in ethanol, a surface process not favored in water. DFT calculations suggest that the surface reaction takes place via disulfide formation driven by the higher stability of the S-Au(111) system. Other reactions that contribute to sulfidization are also detected and discussed.
Collapse
Affiliation(s)
- E A Ramírez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
7
|
Thi MD, Volka K. Surface-enhanced Raman spectroscopic and surface plasmon resonance in situ study of self-assembly of 4-mercaptobenzoic acid on gold surface. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|