• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5091055)   Today's Articles (59)
For: Seland F, Tunold R, Harrington DA. Impedance study of formic acid oxidation on platinum electrodes. Electrochim Acta 2008;53:6851-64. [DOI: 10.1016/j.electacta.2007.12.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Number Cited by Other Article(s)
1
Alaba PA, Lee CS, Abnisa F, Aroua MK, Cognet P, Pérès Y, Wan Daud WMA. Kinetic parameters for glycerol electrooxidation over nitrogen- and fluorine-doped composite carbon: Dynamic electrochemical impedance spectroscopy analysis based. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
2
Nguyen TNH, Jin X, Nolan JK, Xu J, Le KVH, Lam S, Wang Y, Alam MA, Lee H. Printable Nonenzymatic Glucose Biosensors Using Carbon Nanotube-PtNP Nanocomposites Modified with AuRu for Improved Selectivity. ACS Biomater Sci Eng 2020;6:5315-5325. [PMID: 33455280 DOI: 10.1021/acsbiomaterials.0c00647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
3
Dynamic electrochemical impedance study of methanol oxidation at Pt at elevated temperatures. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
4
The methanol and CO electro-oxidation onto Ptpc/Co/Pt metallic multilayer nanostructured electrodes: An experimental and theoretical approach. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
5
Umeda M, Okuda Y, Takizawa S, Inoue M, Nakazawa A. Electrochemical Dissolution of Platinum Electrode in Perfluoroalkylsulfonic Acid. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
6
Stationary and Damped Oscillations in a Direct Formic Acid Fuel Cell (DFAFC) using Pt/C. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
7
Zülke AA, Varela H. The effect of temperature on the coupled slow and fast dynamics of an electrochemical oscillator. Sci Rep 2016;6:24553. [PMID: 27079514 PMCID: PMC4832193 DOI: 10.1038/srep24553] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/31/2016] [Indexed: 11/25/2022]  Open
8
Sacci RL, Seland F, Harrington DA. Dynamic electrochemical impedance spectroscopy, for electrocatalytic reactions. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
9
Bulk concentration and dynamic stability of a model electrochemical system with a preceding chemical reaction. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
10
Du X, Yang Y, Liu J, Liu B, Liu J, Zhong C, Hu W. Surfactant-free and template-free electrochemical approach to prepare well-dispersed Pt nanosheets and their high electrocatalytic activities for ammonia oxidation. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Mostafa E, Baltruschat H. Quasi-Continuous Determination of the Apparent Transfer Coefficient of Methanol Oxidation Using a Potential Modulation Technique Under Convection Conditions. Electrocatalysis (N Y) 2013. [DOI: 10.1007/s12678-013-0165-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
12
Zulke AA, Matos R, Pereira EC. Metallic multilayered films electrodeposited over titanium as catalysts for methanol electro-oxidation. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
13
Apparent transfer coefficient for ORR at polycrystalline platinum under convection conditions: a potential modulation study. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2147-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
14
Dynamic impedance study of ethanol and acetaldehyde oxidation at platinum in acid solutions. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.05.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
15
Slepski P, Darowicki K, Janicka E, Lentka G. A complete impedance analysis of electrochemical cells used as energy sources. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1825-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
16
Telli E, Solmaz R, Kardaş G. Electrocatalytic oxidation of methanol on Pt/NiZn electrode in alkaline medium. RUSS J ELECTROCHEM+ 2011. [DOI: 10.1134/s1023193511070135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
17
Krewer U, Vidakovic-Koch T, Rihko-Struckmann L. Electrochemical Oxidation of Carbon-Containing Fuels and Their Dynamics in Low-Temperature Fuel Cells. Chemphyschem 2011;12:2518-44. [PMID: 21755584 DOI: 10.1002/cphc.201100095] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Indexed: 11/09/2022]
18
Electrocatalysis and redox behavior of Pt2+ ion in CeO2 and Ce0.85Ti0.15O2: XPS evidence of participation of lattice oxygen for high activity. J Solid State Electrochem 2011. [DOI: 10.1007/s10008-011-1402-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
19
Observed electrochemical oscillations during the oxidation of aqueous sulfur dioxide on a sulfur modified platinum electrode. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.01.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
20
Pototskaya VV, Gichan OI. Dynamic instabilities of model electrochemical system with electrocatalytic oxidation and preceding chemical reaction. RUSS J ELECTROCHEM+ 2011. [DOI: 10.1134/s1023193511030116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
21
Du C, Chen M, Wang W, Yin G. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2011;3:105-109. [PMID: 21192691 DOI: 10.1021/am100803d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
22
Osawa M, Komatsu KI, Samjeské G, Uchida T, Ikeshoji T, Cuesta A, Gutiérrez C. The Role of Bridge-Bonded Adsorbed Formate in the Electrocatalytic Oxidation of Formic Acid on Platinum. Angew Chem Int Ed Engl 2010;50:1159-63. [DOI: 10.1002/anie.201004782] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Indexed: 11/06/2022]
23
Osawa M, Komatsu KI, Samjeské G, Uchida T, Ikeshoji T, Cuesta A, Gutiérrez C. The Role of Bridge-Bonded Adsorbed Formate in the Electrocatalytic Oxidation of Formic Acid on Platinum. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004782] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
24
Giant multilayer electrocatalytic effect investigation on Pt/Bi/Pt nanostructured electrodes towards CO and methanol electrooxidation. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
25
Kang Y, Ren M, Zou Z, Huang Q, Li Z, Akins DL, Yang H. Improved electrocatalytic performance of Pd nanoparticles with size-controlled Nafion aggregates for formic acid oxidation. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.04.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
26
Shi J, Zhang ZY, Hu YQ, Hua YX. Incorporation of 4-aminobenzene functionalized multi-walled carbon nanotubes in polyaniline for application in formic acid electrooxidation. J Appl Polym Sci 2010. [DOI: 10.1002/app.32489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
27
Electrodeposited PdNi2 alloy with novelly enhanced catalytic activity for electrooxidation of formic acid. Electrochem commun 2010. [DOI: 10.1016/j.elecom.2010.03.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]  Open
28
Maxakato N, Ozoemena K, Arendse C. Dynamics of Electrocatalytic Oxidation of Ethylene Glycol, Methanol and Formic Acid at MWCNT Platform Electrochemically Modified with Pt/Ru Nanoparticles. ELECTROANAL 2010. [DOI: 10.1002/elan.200900397] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
29
Yi Q, Yu W, Niu F. Novel Nanoporous Binary AuRu Electrocatalysts for Glucose Oxidation. ELECTROANAL 2010. [DOI: 10.1002/elan.200900404] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
30
Seland F, Tunold R, Harrington DA. Activating and deactivating mass transport effects in methanol and formic acid oxidation on platinum electrodes. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.01.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
31
LIU Y, WANG Y, DENG C, WU B, GAO Y. Kinetic Study of Formic Acid Oxidation on Carbon Supported Platinum Electrocatalyst. ELECTROCHEMISTRY 2010. [DOI: 10.5796/electrochemistry.78.662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
32
Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N. Iron(ii) tetrakis(diaquaplatinum)octacarboxyphthalocyanine supported on multi-walled carbon nanotube platform: an efficient functional material for enhancing electron transfer kinetics and electrocatalytic oxidation of formic acid. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm02210a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Size-controlled synthesis and impedance-based mechanistic understanding of Pd/C nanoparticles for formic acid oxidation. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.08.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA