1
|
ZUSHI K, KITAZUMI Y, SOWA K, KANO K, SHIRAI O. Kinetic Analysis of Oxygen Dissolution by Bubble-attaching Electrodes. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kento ZUSHI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Keisei SOWA
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu SHIRAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
2
|
Rational Surface Modification of Carbon Nanomaterials for Improved Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes. Catalysts 2020. [DOI: 10.3390/catal10121447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interfacial electron transfer between redox enzymes and electrodes is a key step for enzymatic bioelectrocatalysis in various bioelectrochemical devices. Although the use of carbon nanomaterials enables an increasing number of redox enzymes to carry out bioelectrocatalysis involving direct electron transfer (DET), the role of carbon nanomaterials in interfacial electron transfer remains unclear. Based on the recent progress reported in the literature, in this mini review, the significance of carbon nanomaterials on DET-type bioelectrocatalysis is discussed. Strategies for the oriented immobilization of redox enzymes in rationally modified carbon nanomaterials are also summarized and discussed. Furthermore, techniques to probe redox enzymes in carbon nanomaterials are introduced.
Collapse
|
3
|
Bioelectrocatalysis based on direct electron transfer of fungal pyrroloquinoline quinone-dependent dehydrogenase lacking the cytochrome domain. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
ADACHI T, KITAZUMI Y, SHIRAI O, KAWANO T, KATAOKA K, KANO K. Effects of Elimination of α Helix Regions on Direct Electron Transfer-type Bioelectrocatalytic Properties of Copper Efflux Oxidase. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.20-00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Taiki ADACHI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu SHIRAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Tenta KAWANO
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | - Kunishige KATAOKA
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | - Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
5
|
Miyata M, Kitazumi Y, Shirai O, Kataoka K, Kano K. Diffusion-limited biosensing of dissolved oxygen by direct electron transfer-type bioelectrocatalysis of multi-copper oxidases immobilized on porous gold microelectrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Zhang L, Cui H, Zou Z, Garakani TM, Novoa-Henriquez C, Jooyeh B, Schwaneberg U. Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Angew Chem Int Ed Engl 2019; 58:4562-4565. [PMID: 30689276 DOI: 10.1002/anie.201814069] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Indexed: 11/10/2022]
Abstract
Escherichia coli's copper efflux oxidase (CueO) has rarely been employed in the cathodic compartment of enzymatic biofuel cells (EBFCs) due to its low redox potential (0.36 V vs. Ag/AgCl, pH 5.5) towards O2 reduction. Herein, directed evolution of CueO towards a more positive onset potential was performed in an electrochemical screening system. An improved CueO variant (D439T/L502K) was obtained with a significantly increased onset potential (0.54 V), comparable to that of high-redox-potential fungal laccases. Upon coupling with an anodic compartment, the EBFC exhibited an open-circuit voltage (Voc ) of 0.56 V. Directed enzyme evolution by tailoring enzymes to application conditions in EBFCs has been validated and might, in combination with molecular understanding, enable future breakthroughs in EBFC performance.
Collapse
Affiliation(s)
- Lingling Zhang
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Zhi Zou
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.,DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | | | - Catalina Novoa-Henriquez
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.,DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Bahareh Jooyeh
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.,DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| |
Collapse
|
7
|
Zhang L, Cui H, Zou Z, Garakani TM, Novoa‐Henriquez C, Jooyeh B, Schwaneberg U. Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lingling Zhang
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Haiyang Cui
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Zhi Zou
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | | | - Catalina Novoa‐Henriquez
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Bahareh Jooyeh
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| |
Collapse
|
8
|
Tsujimura S. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase. Biosci Biotechnol Biochem 2018; 83:39-48. [PMID: 30274547 DOI: 10.1080/09168451.2018.1527209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this review, I present the main highlights of my works in the development of bioelectrocatalysis, which can be used in widespread applications, particularly for the design of biosensor and biofuel cells. In particular, I focus on research progress made in two key bioelectrocatalytic reactions: glucose oxidation by flavin adenine dinucleotide-dependent glucose dehydrogenase and oxygen reduction by bilirubin oxidase. I demonstrate the fundamental principles of bioelectrocatalysis and the requirements for enhancing the catalytic performance, including the choice of a mediator of redox reactions, immobilization, and electrode materials. These methods can allow for achieving control of the bioelectrocatalytic reaction, thereby overcoming obstacles toward their industrial applications.
Collapse
Affiliation(s)
- Seiya Tsujimura
- a Faculty of Pure and Applied Sciences , University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
9
|
Tonooka A, Komatsu T, Tanaka S, Sakamoto H, Satomura T, Suye SI. A L-proline/O 2 biofuel cell using L-proline dehydrogenase (LPDH) from Aeropyrum pernix. Mol Biol Rep 2018; 45:1821-1825. [PMID: 30143972 DOI: 10.1007/s11033-018-4328-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
To utilize amino acids from food waste as an energy source, L-proline/O2 biofuel cell was constructed using a stable enzyme from hyperthermophilic archaeon for long-term operation. On the anode, the electrocatalytic oxidation of L-proline by L-proline dehydrogenase from Aeropyrum pernix was observed in the presence of ferrocenecarboxylic acid as mediator. On the cathode, electrocatalytic oxygen reduction was detected. Ketjenblack modification of carbon cloth substrate increased the current density due to increased laccase loading and enhanced electron transfer reaction. The biofuel cell using these electrodes achieved a current density of 6.00 µA/cm2. We successfully constructed the first biofuel cell that generates power from L-proline.
Collapse
Affiliation(s)
- Aina Tonooka
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1, Fukui, 910-8507, Japan
| | - Tomohiro Komatsu
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1, Fukui, 910-8507, Japan
| | - Shino Tanaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Hiroaki Sakamoto
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1, Fukui, 910-8507, Japan.
| | - Takenori Satomura
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Shin-Ichiro Suye
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1, Fukui, 910-8507, Japan. .,Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan.
| |
Collapse
|
10
|
Chumillas S, Maestro B, Feliu JM, Climent V. Comprehensive Study of the Enzymatic Catalysis of the Electrochemical Oxygen Reduction Reaction (ORR) by Immobilized Copper Efflux Oxidase (CueO) From Escherichia coli. Front Chem 2018; 6:358. [PMID: 30197881 PMCID: PMC6117412 DOI: 10.3389/fchem.2018.00358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/30/2018] [Indexed: 11/23/2022] Open
Abstract
In recent years, enzymatic fuel cells have experienced a great development promoted by the availability of novel biological techniques that allow the access to a large number of enzymatic catalysts. One of the most important aspects in this area is the development of biocatalysts for the oxygen reduction reaction (ORR). Laccases from the group of enzymes called blue multi-cooper oxidases have received considerable attention because of their ability to catalyze the electrochemical oxygen reduction reaction to water when immobilized on metallic or carbonaceous electrode materials. In this paper we report a comprehensive study of the electrocatalytic activity of the enzyme Copper efflux oxidase (CueO) from Escherichia coli immobilized on different electrode materials. The influence of the electrode substrate employed for protein immobilization was evaluated using glassy carbon, gold or platinum electrodes. Gold and platinum electrodes were modified using different self-assembled monolayers (SAM) able to tune the electrostatic interaction between the protein and the substrate, depending on the nature of the terminal functional group in the SAM. The effects of protein immobilization time, electrode potential, solution pH and temperature, protein and O2 concentration have been carefully investigated. Finally, direct electron transfer (DET) was investigated in the presence of the following inhibitors: fluoride (F−), chloride (Cl−) and azide (N3-).
Collapse
Affiliation(s)
- Sara Chumillas
- Institute of Electrochemistry, University of Alicante, Alicante, Spain
| | - Beatriz Maestro
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Juan M Feliu
- Institute of Electrochemistry, University of Alicante, Alicante, Spain
| | - Víctor Climent
- Institute of Electrochemistry, University of Alicante, Alicante, Spain
| |
Collapse
|
11
|
Xia HQ, Kitazumi Y, Shirai O, Ozawa H, Onizuka M, Komukai T, Kano K. Factors affecting the interaction between carbon nanotubes and redox enzymes in direct electron transfer-type bioelectrocatalysis. Bioelectrochemistry 2017; 118:70-74. [DOI: 10.1016/j.bioelechem.2017.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 11/25/2022]
|
12
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
13
|
Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell. NANOMATERIALS 2016; 6:nano6120238. [PMID: 28335366 PMCID: PMC5302713 DOI: 10.3390/nano6120238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/23/2022]
Abstract
In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.
Collapse
|
14
|
Sugimoto Y, Kitazumi Y, Tsujimura S, Shirai O, Yamamoto M, Kano K. Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis. Biosens Bioelectron 2015; 63:138-144. [DOI: 10.1016/j.bios.2014.07.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 11/25/2022]
|
15
|
Agbo P, Heath JR, Gray HB. Modeling Dioxygen Reduction at Multicopper Oxidase Cathodes. J Am Chem Soc 2014; 136:13882-7. [DOI: 10.1021/ja5077519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Agbo
- Beckman Institute, Noyes
Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - James R. Heath
- Beckman Institute, Noyes
Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Harry B. Gray
- Beckman Institute, Noyes
Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
16
|
Filip J, Tkac J. The pH dependence of the cathodic peak potential of the active sites in bilirubin oxidase. Bioelectrochemistry 2014; 96:14-20. [DOI: 10.1016/j.bioelechem.2013.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/12/2013] [Accepted: 11/29/2013] [Indexed: 02/08/2023]
|
17
|
Sané S, Richter K, Rubenwolf S, Matschke NJ, Jolivalt C, Madzak C, Zengerle R, Gescher J, Kerzenmacher S. Using planktonic microorganisms to supply the unpurified multi-copper oxidases laccase and copper efflux oxidases at a biofuel cell cathode. BIORESOURCE TECHNOLOGY 2014; 158:231-238. [PMID: 24607459 DOI: 10.1016/j.biortech.2014.02.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
The feasibility to apply crude culture supernatants that contain the multicopper oxidases laccase or copper efflux oxidase (CueO) as oxygen reducing catalysts in a biofuel cell cathode is shown. As enzyme-secreting recombinant planktonic microorganisms, the yeast Yarrowia lipolytica and the bacterium Escherichia coli were investigated. The cultivation and operation conditions (choice of medium, pH) had distinct effects on the electro-catalytic performance. The highest current density of 119 ± 23 μA cm(-2) at 0.400 V vs. NHE was obtained with the crude culture supernatant of E. coli cells overexpressing CueO and tested at pH 5.0. In comparison, at pH 7.4 the electrode potential at 100 μA cm(-2) is 0.25 V lower. Laccase-containing supernatants of Y. lipolytica yielded a maximum current density of 6.7 ± 0.4 μAcm(-2) at 0.644 V vs. NHE. These results open future possibilities to circumvent elaborate enzyme purification procedures and realize cost effective and easy-to-operate enzymatic biofuel cells.
Collapse
Affiliation(s)
- Sabine Sané
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Katrin Richter
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| | - Stefanie Rubenwolf
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nina Joan Matschke
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Claude Jolivalt
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7197 Laboratoire de Réactivité de surface, F-75005 Paris, France; CNRS, UMR 7197 Laboratoire de Réactivité de surface, F-75005 Paris, France.
| | - Catherine Madzak
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France.
| | - Roland Zengerle
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79110 Freiburg, Germany.
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| | - Sven Kerzenmacher
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| |
Collapse
|
18
|
Mogi H, Fukushi Y, Koide S, Sano R, Sasaki T, Nishioka Y. Ascorbic Acid Fuel Cell with a Microchannel Fabricated on Flexible Polyimide Substrate. ACTA ACUST UNITED AC 2014. [DOI: 10.1541/ieejsmas.134.366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiroshi Mogi
- Department of Precision Machinery Engineering, CST, Nihon University
| | - Yudai Fukushi
- Department of Precision Machinery Engineering, CST, Nihon University
| | - Syohei Koide
- Department of Precision Machinery Engineering, CST, Nihon University
| | - Ryohei Sano
- Department of Precision Machinery Engineering, CST, Nihon University
| | - Tsubasa Sasaki
- Department of Precision Machinery Engineering, CST, Nihon University
| | | |
Collapse
|
19
|
Liu XW, Li WW, Yu HQ. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem Soc Rev 2014; 43:7718-45. [DOI: 10.1039/c3cs60130g] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Electrocatalytic reduction of oxygen by bilirubin oxidase in hydrophobic ionic liquids containing a small quantity of water. Catal Today 2013. [DOI: 10.1016/j.cattod.2012.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Suraniti E, Tsujimura S, Durand F, Mano N. Thermophilic biocathode with bilirubin oxidase from Bacillus pumilus. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2012.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Tsujimura S, Asahi M, Goda-Tsutsumi M, Shirai O, Kano K, Miyazaki K. Direct electron transfer to a metagenome-derived laccase fused to affinity tags near the electroactive copper site. Phys Chem Chem Phys 2013; 15:20585-9. [DOI: 10.1039/c3cp53096e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
|
24
|
Agbo P, Heath JR, Gray HB. Catalysis of dioxygen reduction by Thermus thermophilus strain HB27 laccase on ketjen black electrodes. J Phys Chem B 2012; 117:527-34. [PMID: 23163614 DOI: 10.1021/jp309759g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We present electrochemical analyses of the catalysis of dioxygen reduction by Thermus thermophilus strain HB27 laccase on ketjen black substrates. Our cathodes reliably produce 0.56 mA cm(-2) at 0.0 V vs Ag|AgCl reference at 30 °C in air-saturated buffer, under conditions of nonlimiting O(2) flux. We report the electrochemical activity of this laccase as a function of temperature, pH, time, and the efficiency of its conversion of dioxygen to water. We have measured the surface concentration of electrochemically active species, permitting the extraction of electron transfer rates at the enzyme-electrode interface: 1 s(-1) for this process at zero driving force at 30 °C and a limiting rate of 23 s(-1) at 240 mV overpotential at 50 °C.
Collapse
Affiliation(s)
- Peter Agbo
- California Institute of Technology, Pasadena, California, USA
| | | | | |
Collapse
|
25
|
|
26
|
|
27
|
Recent Developments of Nanostructured Electrodes for Bioelectrocatalysis of Dioxygen Reduction. ACTA ACUST UNITED AC 2011. [DOI: 10.1155/2011/947637] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The recent development of nanostructured electrodes for bioelectrocatalytic dioxygen reduction catalysed by two copper oxidoreductases, laccase and bilirubin oxidase, is reviewed. Carbon-based nanomaterials as carbon nanotubes or carbon nanoparticles are frequently used for electrode modification, whereas there are only few examples of biocathodes modified with metal or metal oxide nanoparticles. These nanomaterials are adsorbed on the electrode surface or embedded in multicomponent film. The nano-objects deposited act as electron shuttles between the enzyme and the electrode substrate providing favourable conditions for mediatorless bioelectrocatalysis.
Collapse
|
28
|
Chaboy J, Díaz-Moreno S, Díaz-Moreno I, De la Rosa MA, Díaz-Quintana A. How the local geometry of the Cu-binding site determines the thermal stability of blue copper proteins. ACTA ACUST UNITED AC 2011; 18:25-31. [PMID: 21276936 DOI: 10.1016/j.chembiol.2010.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 12/16/2022]
Abstract
Identifying the factors that govern the thermal resistance of cupredoxins is essential for understanding their folding and stability, and for improving our ability to design highly stable enzymes with potential biotechnological applications. Here, we show that the thermal unfolding of plastocyanins from two cyanobacteria--the mesophilic Synechocystis and the thermophilic Phormidium--is closely related to the short-range structure around the copper center. Cu K-edge X-ray absorption spectroscopy shows that the bond length between Cu and the S atom from the cysteine ligand is a key structural factor that correlates with the thermal stability of the cupredoxins in both oxidized and reduced states. These findings were confirmed by an additional study of a site-directed mutant of Phormidium plastocyanin showing a reverse effect of the redox state on the thermal stability of the protein.
Collapse
Affiliation(s)
- Jesús Chaboy
- Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Copper proteins play key roles in biological processes such as electron transfer and dioxygen activation; the active site of each of these proteins is classified as either type 1, 2, or 3, depending on its optical and electron paramagnetic resonance properties. We have built a new type of site that we call “type zero copper” by incorporating leucine, isoleucine, or phenylalanine in place of methionine at position 121 in C112D Pseudomonas aeruginosa azurin. X-ray crystallographic analysis shows that these sites adopt distorted tetrahedral geometries, with an unusually short Cu-O(G45 carbonyl) bond (2.35–2.55 Å). Relatively weak absorption near 800 nm and narrow parallel hyperfine splittings in EPR spectra are the spectroscopic signatures of type zero copper. Copper K-edge x-ray absorption spectra suggest elevated Cu(II) 4p character in the d-electron ground state. Cyclic voltammetric experiments demonstrate that the electron transfer reactivities of type zero azurins are enhanced relative to that of the corresponding type 2 (C112D) protein.
Collapse
Affiliation(s)
- Kyle M Lancaster
- California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
30
|
Kataoka K, Hirota S, Maeda Y, Kogi H, Shinohara N, Sekimoto M, Sakurai T. Enhancement of Laccase Activity through the Construction and Breakdown of a Hydrogen Bond at the Type I Copper Center in Escherichia coli CueO and the Deletion Mutant Δα5−7 CueO. Biochemistry 2010; 50:558-65. [DOI: 10.1021/bi101107c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kunishige Kataoka
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yasuo Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroki Kogi
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Naoya Shinohara
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Madoka Sekimoto
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Sakurai
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
31
|
Ludwig R, Harreither W, Tasca F, Gorton L. Cellobiose Dehydrogenase: A Versatile Catalyst for Electrochemical Applications. Chemphyschem 2010; 11:2674-97. [DOI: 10.1002/cphc.201000216] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Tamaki T, Hiraide A, Asmat FB, Ohashi H, Ito T, Yamaguchi T. Evaluation of Immobilized Enzyme in a High-Surface-Area Biofuel Cell Electrode Made of Redox-Polymer-Grafted Carbon Black. Ind Eng Chem Res 2010. [DOI: 10.1021/ie1001789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takanori Tamaki
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan, and Department of Chemical System Engineering and Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Atsushi Hiraide
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan, and Department of Chemical System Engineering and Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Faizly B. Asmat
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan, and Department of Chemical System Engineering and Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hidenori Ohashi
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan, and Department of Chemical System Engineering and Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taichi Ito
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan, and Department of Chemical System Engineering and Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takeo Yamaguchi
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan, and Department of Chemical System Engineering and Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
33
|
Mie Y, Ikegami M, Komatsu Y. Gold sputtered electrode surfaces enhance direct electron transfer reactions of human cytochrome P450s. Electrochem commun 2010. [DOI: 10.1016/j.elecom.2010.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
|
35
|
Kontani R, Tsujimura S, Kano K. Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes. Bioelectrochemistry 2009; 76:10-3. [DOI: 10.1016/j.bioelechem.2009.02.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/24/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
|
36
|
Kataoka K, Sugiyama R, Hirota S, Inoue M, Urata K, Minagawa Y, Seo D, Sakurai T. Four-electron reduction of dioxygen by a multicopper oxidase, CueO, and roles of Asp112 and Glu506 located adjacent to the trinuclear copper center. J Biol Chem 2009; 284:14405-13. [PMID: 19297322 DOI: 10.1074/jbc.m808468200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of the four-electron reduction of dioxygen by a multicopper oxidase, CueO, was studied based on reactions of single and double mutants with Cys(500), a type I copper ligand, and the noncoordinating Asp(112) and Glu(506), which form hydrogen bonds with the trinuclear copper center directly and indirectly via a water molecule. The reaction of C500S containing a vacant type I copper center produced intermediate I in an EPR-silent peroxide-bound form. The formation of intermediate I from C500S/D112N was restricted due to a reduction in the affinity of the trinuclear copper center for dioxygen. The state of intermediate I was realized to be the resting form of C500S/E506Q and C500S of the truncated mutant Deltaalpha5-7CueO, in which the 50 amino acids covering the substrate-binding site were removed. Reactions of the recombinant CueO and E506Q afforded intermediate II, a fully oxidized form different from the resting one, with a very broad EPR signal, g < 2, detectable only at cryogenic temperatures and unsaturated with high power microwaves. The lifetime of intermediate II was prolonged by the mutation at Glu(506) involved in the donation of protons. The structure of intermediates I and II and the mechanism of the four-electron reduction of dioxygen driven by Asp(112) and Glu(506) are discussed.
Collapse
Affiliation(s)
- Kunishige Kataoka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Umasankar Y, Chen SM, Li SH. Electroanalytical Responses of Arsenic Oxide, Methanol, and Oxygen at the Ruthenium Oxide-Hexachloroiridate with Platinum Hybrid Film. ELECTROANAL 2008. [DOI: 10.1002/elan.200804322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
|