1
|
Yang X, Zhao P, Xie Z, Ni M, Wang C, Yang P, Xie Y, Fei J. Selective determination of epinephrine using electrochemical sensor based on ordered mesoporous carbon / nickel oxide nanocomposite. Talanta 2021; 233:122545. [PMID: 34215048 DOI: 10.1016/j.talanta.2021.122545] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
A nanocomposite of ordered mesoporous carbon/nickel oxide (OMC-NiO) was synthesized by hard-templating method. The nanocomposite remained ordered mesostructure and high surface area with the NiO nanocrystals embedded in the wall of the OMC. A sensitive sensor for electrochemical detection of epinephrine (EP) was developed with GCE modified by OMC-NiO nanocomposite. Cyclic voltammogram (CV) and differential pulse voltammetry (DPV) were used as the techniques to explore the electrochemical behavior of EP on OMC-NiO/GCE surface. The result showed that the electrode demonstrated better electrocatalytic performance to EP compared to that seen at OMC/GCE. Under the optimum condition, DPV measurements of the electrode response displayed a linear detection range for 8.0 × 10-7 to 5.0 × 10-5 M with a detection limit of 8.5 × 10-8 M (S/N = 3). It is worth noting that the electrocatalytic redox mechanism of EP on the electrode have studied through experiments and calculations (cyclic voltammetry and molecular electrostatic potential distribution). Moreover, the electrocatalytic behavior for the oxidation of EP and uric acid (UA) on OMC-NiO/GCE surface was investigated. The result showed that the sensor can be used to selectively determinate EP in the presence of an excesses of UA. Finally, the developed sensor was successfully applied to the determination of EP in spiked human blood serum and EP injection with satisfactory results.
Collapse
Affiliation(s)
- Xiao Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Fisheries Science Institute, Changsha, 410153, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha, 410153, People's Republic of China
| | - Meijun Ni
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chenxi Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pingping Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
2
|
Rajaram R, Kanagavalli P, Senthilkumar S, Mathiyarasu J. Au Nanoparticle-decorated Nanoporous PEDOT Modified Glassy Carbon Electrode: A New Electrochemical Sensing Platform for the Detection of Glutathione. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0065-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Shan X, Shan X, Pan T, Dai F, Chen X, Wang W, Chen Z. A Solid-state Electrochemiluminescence Sensor for Detecting Glutathione with a Graphite-phase Carbon Nitride/Silica Modified Glassy Carbon Electrode. ANAL SCI 2019; 35:1299-1304. [PMID: 31308299 DOI: 10.2116/analsci.19p201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A solid-state electrochemiluminescence (ECL) sensor for the detection of reduced glutathione (GSH) based on a g-C3N4/SiO2 modified glass carbon electrode (GCE) has been developed in this research. The g-C3N4, which is employed as a luminophore, is simply prepared and exhibits an excellent ECL response. Mesoporous silica hollow spheres (SiO2) with a large specific surface area are introduced here to increase the loading amount of g-C3N4. Compared to a g-C3N4 modified GCE, the g-C3N4/SiO2 modified GCE displays a much higher ECL intensity. A high enhancement effect on the ECL intensity of g-C3N4/SiO2 modified GCE is obtained in the presence of GSH in the electrolyte. Moreover, the enhanced ECL intensity shows a good linear relationship to the GSH concentration in the range from 1.0 × 10-7 to 5.0 × 10-4 M, with a detection limit of 2.0 × 10-8 M (6.1 ng/mL). Besides, the ECL sensor exhibits a good anti-interference ability and has been successfully applied in the detection of GSH in commercial samples. The proposed sensor provides a promising platform for life science.
Collapse
Affiliation(s)
- Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Xiaomeng Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Tao Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Fanzhuo Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Vocational Institute of Engineering
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| |
Collapse
|
4
|
Anu Prathap MU, Kaur B, Srivastava R. Electrochemical Sensor Platforms Based on Nanostructured Metal Oxides, and Zeolite-Based Materials. CHEM REC 2018; 19:883-907. [DOI: 10.1002/tcr.201800068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/19/2018] [Indexed: 11/11/2022]
Affiliation(s)
- M. U. Anu Prathap
- Department of Biological Systems Engineering; University of Wisconsin−Madison; 460 Henry Mall Madison, WI 53706 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Balwinder Kaur
- Department of Chemistry; University of Massachusetts Lowell; 256 Riverside Street,Olney Hall Lowell, MA 01845 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Rajendra Srivastava
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| |
Collapse
|
5
|
Sudha V, Mohanty SA, Thangamuthu R. Facile synthesis of Co3O4 disordered circular sheets for selective electrochemical determination of nitrite. NEW J CHEM 2018. [DOI: 10.1039/c8nj02639d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The electrochemical nitrite sensing properties of a cobalt oxide (Co3O4) modified glassy carbon electrode were investigated.
Collapse
Affiliation(s)
- Velayutham Sudha
- Electrochemical Materials Science (ECMS) Division
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | | - Rangasamy Thangamuthu
- Electrochemical Materials Science (ECMS) Division
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
6
|
Zhang ZX, Liu Y, Meng WJ, Wang J, Li W, Wang H, Zhao D, Lu JX. One-pot synthesis of Ni nanoparticle/ordered mesoporous carbon composite electrode materials for electrocatalytic reduction of aromatic ketones. NANOSCALE 2017; 9:17807-17813. [PMID: 29115341 DOI: 10.1039/c7nr06602c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A simple one-pot synthesis of Ni nanoparticle/ordered mesoporous carbon composite electrode materials is demonstrated for electrosynthesis for the first time. The obtained nanocomposites have uniform mesopore sizes (3.0-3.7 nm), large specific surface areas (506-633 m2 g-1), high pore volumes (0.28-0.38 cm3 g-1), well-graphitized carbon frameworks, and uniformly dispersed Ni nanoparticles (7-15 nm) embedded in the carbon pore walls. The prepared materials show very high performance in the selective (∼84%) electrocatalytic reduction of aromatic ketones into alcohols (∼79%).
Collapse
Affiliation(s)
- Zhi-Xia Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Vinoth V, Wu JJ, Asiri AM, Anandan S. Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione. ULTRASONICS SONOCHEMISTRY 2017; 39:363-373. [PMID: 28732957 DOI: 10.1016/j.ultsonch.2017.04.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Developed here an eco-friendly, one-pot approach toward rapid synthesis of silver nanoparticles anchored reduced graphene oxide (AgNPs(TMSPED)-rGO) nanosheets via sonochemical irradiation method, using an aqueous solution mixture of GO and AgNO3 in the presence of N-[3(trimethoxysilyl)propyl] ethylenediamine (TMSPED) without any reducing agent. As synthesized decorated nanosheets was thoroughly characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Pristine AgNPs(TMSPED), pristine rGO(TMSPED) and as prepared AgNPs(TMSPED)-rGO materials were employed to modify the glassy carbon (GC) electrode and demonstrated its excellent electrocatalytic activities towards glutathione (GSH). Voltammetry and amperometry measurements were utilized to assess the electrochemical properties towards the glutathione detection. When the Ag nanoparticles were anchored onto the rGO surface, the observed results illustrated that the electrocatalytic properties of rGO might be enhanced. The resulting sensor exhibits excellent repeatability and long-term stability. Furthermore, AgNPs(TMSPED)-rGO/GC electrode able to be employed for the selective determination of GSH in amperometric analysis in the presence of ascorbic acid (AA), dopamine (DA), uric acid (UA) and glucose. Finally, this modified electrode was effectively applied to determine glutathione in real samples with good recoveries.
Collapse
Affiliation(s)
- Victor Vinoth
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Jerry J Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan.
| | - Abdullah M Asiri
- The Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21413, P.O. Box 80203, Saudi Arabia
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India; Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan.
| |
Collapse
|
8
|
Walcarius A. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1863. [PMID: 28800106 PMCID: PMC5579580 DOI: 10.3390/s17081863] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/27/2023]
Abstract
The past decade has seen an increasing number of extensive studies devoted to the exploitation of ordered mesoporous carbon (OMC) materials in electrochemistry, notably in the fields of energy and sensing. The present review summarizes the recent achievements made in field of electroanalysis using electrodes modified with such nanomaterials. On the basis of comprehensive tables, the interest in OMC for designing electrochemical sensors is illustrated through the various applications developed to date. They include voltammetric detection after preconcentration, electrocatalysis (intrinsically due to OMC or based on suitable catalysts deposited onto OMC), electrochemical biosensors, as well as electrochemiluminescence and potentiometric sensors.
Collapse
Affiliation(s)
- Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie Pour l'Environnement (LCPME), UMR 7564, CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France.
| |
Collapse
|
9
|
Yuan B, Xu C, Zhang R, Lv D, Li S, Zhang D, Liu L, Fernandez C. Glassy carbon electrode modified with 7,7,8,8-tetracyanoquinodimethane and graphene oxide triggered a synergistic effect: Low-potential amperometric detection of reduced glutathione. Biosens Bioelectron 2017; 96:1-7. [PMID: 28448855 DOI: 10.1016/j.bios.2017.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/30/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
Abstract
A sensitive electrochemical sensor based on the synergistic effect of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and graphene oxide (GO) for low-potential amperometric detection of reduced glutathione (GSH) in pH 7.2 phosphate buffer solution (PBS) has been reported. This is the first time that the combination of GO and TCNQ have been successfully employed to construct an electrochemical sensor for the detection of glutathione. The surface of the glassy carbon electrode (GCE) was modified by a drop casting using TCNQ and GO. Cyclic voltammetric measurements showed that TCNQ and GO triggered a synergistic effect and exhibited an unexpected electrocatalytic activity towards GSH oxidation, compared to GCE modified with only GO, TCNQ or TCNQ/electrochemically reduced GO. Three oxidation waves for GSH were found at -0.05, 0.1 and 0.5V, respectively. Amperometric techniques were employed to detect GSH sensitively using a GCE modified with TCNQ/GO at -0.05V. The electrochemical sensor showed a wide linear range from 0.25 to 124.3μM and 124.3μM to 1.67mM with a limit of detection of 0.15μM. The electroanalytical sensor was successfully applied towards the detection of GSH in an eye drop solution.
Collapse
Affiliation(s)
- Baiqing Yuan
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China.
| | - Chunying Xu
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China
| | - Renchun Zhang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China
| | - Donghui Lv
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China
| | - Sujuan Li
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China
| | - Daojun Zhang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China
| | - Lin Liu
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7GJ, United Kingdom.
| |
Collapse
|
10
|
Nagles E, Ibarra L, Llanos JP, Hurtado J, Garcia-Beltrán O. Development of a novel electrochemical sensor based on cobalt(II) complex useful in the detection of dopamine in presence of ascorbic acid and uric acid. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Meloni GN, Bertotti M. Ring-disc Microelectrodes towards Glutathione Electrochemical Detection. ELECTROANAL 2016. [DOI: 10.1002/elan.201600574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gabriel N. Meloni
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Mauro Bertotti
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| |
Collapse
|
12
|
Mu S, Yang Y. Recognition of glutathione based on its electrocatalytic oxidation on the bare fluorine doped tin oxide electrode. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.08.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Ibupoto ZH, Tahira A, Mallah AB, Shahzad SA, Willander M, Wang B, Yu C. The Synthesis of Functional Cobalt Oxide Nanostructures, and their Sensitive Glucose Sensing Application. ELECTROANAL 2016. [DOI: 10.1002/elan.201600286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zafar Hussain Ibupoto
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- Dr. M. A. Kazi Institute of Chemistry; University of Sindh Jamshoro; 76080 Pakistan
| | - Aneela Tahira
- Dr. M. A. Kazi Institute of Chemistry; University of Sindh Jamshoro; 76080 Pakistan
| | - Arfana Begum Mallah
- Dr. M. A. Kazi Institute of Chemistry; University of Sindh Jamshoro; 76080 Pakistan
| | - Sohail Anjum Shahzad
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Magnus Willander
- Department of Science and Technology, Campus Norrkoping; Linkoping University; SE-60174 Norrkoping Sweden
| | - Bin Wang
- Institute for Clean Energy & Advanced Materials; Southwest University; Chongqing 400715 P. R. China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
14
|
Yin J, Guo W, Qin X, Pei M, Wang L, Ding F. A regular “signal attenuation” electrochemical aptasensor for highly sensitive detection of streptomycin. NEW J CHEM 2016. [DOI: 10.1039/c6nj02209j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel aptasensor based on PCNRs and MWCNTs–CuO–AuNPs as the nanomatrix was constructed for the highly sensitive detection of streptomycin.
Collapse
Affiliation(s)
- Junling Yin
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Wenjuan Guo
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xiaoli Qin
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Luyan Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Feng Ding
- Department of General Surgery
- Jinan Hospital
- Jinan
- China
| |
Collapse
|
15
|
Guo Z, Wang ZY, Wang HH, Huang GQ, Li MM. Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide–Au nanomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:197-204. [DOI: 10.1016/j.msec.2015.07.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/18/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
16
|
Trifonov A, Tel-Vered R, Fadeev M, Cecconello A, Willner I. Metal Nanoparticle-Loaded Mesoporous Carbon Nanoparticles: Electrical Contacting of Redox Proteins and Electrochemical Sensing Applications. ELECTROANAL 2015. [DOI: 10.1002/elan.201500183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Zhang Y, Peng H. Recent Advancement of Nanostructured Carbon for Energy Applications. Chem Rev 2015; 115:5159-223. [DOI: 10.1021/cr5006217] [Citation(s) in RCA: 625] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhibin Yang
- State Key Laboratory of Molecular
Engineering of Polymers, Collaborative Innovation Center of Polymers
and Polymer Composite Materials, Department of Macromolecular Science
and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Jing Ren
- State Key Laboratory of Molecular
Engineering of Polymers, Collaborative Innovation Center of Polymers
and Polymer Composite Materials, Department of Macromolecular Science
and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Zhitao Zhang
- State Key Laboratory of Molecular
Engineering of Polymers, Collaborative Innovation Center of Polymers
and Polymer Composite Materials, Department of Macromolecular Science
and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Xuli Chen
- State Key Laboratory of Molecular
Engineering of Polymers, Collaborative Innovation Center of Polymers
and Polymer Composite Materials, Department of Macromolecular Science
and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Guozhen Guan
- State Key Laboratory of Molecular
Engineering of Polymers, Collaborative Innovation Center of Polymers
and Polymer Composite Materials, Department of Macromolecular Science
and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Longbin Qiu
- State Key Laboratory of Molecular
Engineering of Polymers, Collaborative Innovation Center of Polymers
and Polymer Composite Materials, Department of Macromolecular Science
and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Ye Zhang
- State Key Laboratory of Molecular
Engineering of Polymers, Collaborative Innovation Center of Polymers
and Polymer Composite Materials, Department of Macromolecular Science
and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular
Engineering of Polymers, Collaborative Innovation Center of Polymers
and Polymer Composite Materials, Department of Macromolecular Science
and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
18
|
|
19
|
Anik Ü, Çubukçu M, Ertaş FN. An effective electrochemical biosensing platform for the detection of reduced glutathione. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:971-7. [DOI: 10.3109/21691401.2015.1008504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Wei C, Cheng C, Zhao J, Wang Z, Wu H, Gu K, Du W, Pang H. Mesoporous ZnS-NiS Nanocomposites for Nonenzymatic Electrochemical Glucose Sensors. ChemistryOpen 2015; 4:32-8. [PMID: 25861568 PMCID: PMC4380951 DOI: 10.1002/open.201402044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Indexed: 11/13/2022] Open
Abstract
Mesoporous ZnS-NiS composites are prepared via ion- exchange reactions using ZnS as the precursor. The prepared mesoporous ZnS-NiS composite materials have large surface areas (137.9 m(2) g(-1)) compared with the ZnS precursor. More importantly, the application of these mesoporous ZnS-NiS composites as nonenzymatic glucose sensors was successfully explored. Electrochemical sensors based on mesoporous ZnS-NiS composites exhibit a high selectivity and a low detection limit (0.125 μm) toward the oxidation of glucose, which can mainly be attributed to the morphological characteristics of the mesoporous structure with high specific surface area and a rational composition of the two constituents. In addition, the mesoporous ZnS-NiS composites coated on the surface of electrodes can be used to modify the mass transport regime, and this alteration can, in favorable circumstances, facilitate the amperometric discrimination between species. These results suggest that such mesoporous ZnS-NiS composites are promising materials for nonenzymatic glucose sensors.
Collapse
Affiliation(s)
- Chengzhen Wei
- College of Chemistry and Chemical Engineering, Anyang Normal UniversityAnyang, 455002 Henan (P. R. China)
| | - Cheng Cheng
- College of Chemistry and Chemical Engineering, Anyang Normal UniversityAnyang, 455002 Henan (P. R. China)
| | - Junhong Zhao
- College of Chemistry and Chemical Engineering, Anyang Normal UniversityAnyang, 455002 Henan (P. R. China)
| | - Zhangtao Wang
- College of Chemistry and Chemical Engineering, Anyang Normal UniversityAnyang, 455002 Henan (P. R. China)
| | - Haipeng Wu
- College of Chemistry and Chemical Engineering, Anyang Normal UniversityAnyang, 455002 Henan (P. R. China)
| | - Kaiyue Gu
- College of Chemistry and Chemical Engineering, Anyang Normal UniversityAnyang, 455002 Henan (P. R. China)
| | - Weimin Du
- College of Chemistry and Chemical Engineering, Anyang Normal UniversityAnyang, 455002 Henan (P. R. China)
| | - Huan Pang
- College of Chemistry and Chemical Engineering, Anyang Normal UniversityAnyang, 455002 Henan (P. R. China)
- State Key Laboratory of Coordination Chemistry, Nanjing UniversityNanjing, 210093 Jiangsu (P. R. China)
| |
Collapse
|
21
|
Kaur B, Srivastava R, Satpati B. A novel gold nanoparticle decorated nanocrystalline zeolite based electrochemical sensor for the nanomolar simultaneous detection of cysteine and glutathione. RSC Adv 2015. [DOI: 10.1039/c5ra19249h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High electrocatalytic activity of the sensor can be attributed to the highly dispersed gold nanoparticles on the nanocrystalline zeolite matrix.
Collapse
Affiliation(s)
- Balwinder Kaur
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| | - Rajendra Srivastava
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| | - Biswarup Satpati
- Surface Physics and Material Science Division
- Saha Institute of Nuclear Physics
- Kolkata 700 064
- India
| |
Collapse
|
22
|
Dhawale DS, Mane GP, Joseph S, Talapaneni SN, Anand C, Mano A, Aldeyab SS, Lakhi KS, Vinu A. Cobalt oxide functionalized nanoporous carbon electrodes and their excellent supercapacitive performance. RSC Adv 2015. [DOI: 10.1039/c4ra14041a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanoporous carbon (CMK-3-150) functionalized with different amounts of cobalt oxide (CoO) nanoparticles was synthesized by an incipient wetness impregnation technique for supercapacitor application.
Collapse
Affiliation(s)
- Dattatray S. Dhawale
- AIBN
- The University of Queensland
- Brisbane 4072
- Australia
- International Center for Materials Nanoarchitectonics
| | - Gurudas P. Mane
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba 305-0044
- Japan
| | - Stalin Joseph
- AIBN
- The University of Queensland
- Brisbane 4072
- Australia
| | - Siddulu N. Talapaneni
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba 305-0044
- Japan
| | - Chokkalingam Anand
- AIBN
- The University of Queensland
- Brisbane 4072
- Australia
- International Center for Materials Nanoarchitectonics
| | - Ajayan Mano
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba 305-0044
- Japan
| | - Salem S. Aldeyab
- Petrochemical Research Chair
- Department of Chemistry
- King Saud University
- Riyadh
- Saudi Arabia
| | | | - Ajayan Vinu
- AIBN
- The University of Queensland
- Brisbane 4072
- Australia
- International Center for Materials Nanoarchitectonics
| |
Collapse
|
23
|
Wang T, Su W, Xiao Z, Hao S, Li Y, Hu J. Highly sensitive determination of reduced glutathione based on a cobalt nanoparticle implanted-modified indium tin oxide electrode. Analyst 2015; 140:5176-83. [DOI: 10.1039/c5an00631g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt nanoparticle modified indium tin oxide (CoNP/ITO) electrodes fabricated by ion implantation were applied for the detection of reduced glutathione (GSH).
Collapse
Affiliation(s)
- Tong Wang
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
| | - Wen Su
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
| | - Zhengjun Xiao
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
| | - Shuang Hao
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
| | - Yuanchun Li
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
| | - Jingbo Hu
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
- Key Laboratory of Beam Technology and Material Modification of Ministry of Education
| |
Collapse
|
24
|
Nsabimana A, Bo X, Zhang Y, Li M, Han C, Guo L. Electrochemical properties of boron-doped ordered mesoporous carbon as electrocatalyst and Pt catalyst support. J Colloid Interface Sci 2014; 428:133-40. [DOI: 10.1016/j.jcis.2014.04.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/21/2014] [Indexed: 11/16/2022]
|
25
|
Yuan B, Zhang R, Jiao X, Li J, Shi H, Zhang D. Amperometric determination of reduced glutathione with a new Co-based metal-organic coordination polymer modified electrode. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Li SJ, Du JM, Zhang JP, Zhang MJ, Chen J. A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1164-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Raj V, Silambarasan J, Rajakumar P. Application of cobalt oxide nanostructured modified aluminium electrode for electrocatalytic oxidation of guanine and single-strand DNA. RSC Adv 2014. [DOI: 10.1039/c4ra02490g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The electrocatalytic oxidation of guanine in ssDNA at cobalt oxide nanoflower-modified aluminium electrode.
Collapse
Affiliation(s)
- Vairamuthu Raj
- Advanced Materials Research Laboratory
- Department of Chemistry
- Periyar University
- Salem-636 011, India
| | | | - Panchanathan Rajakumar
- Advanced Materials Research Laboratory
- Department of Chemistry
- Periyar University
- Salem-636 011, India
| |
Collapse
|
28
|
Yuan B, Xu C, Liu L, Zhang Q, Ji S, Pi L, Zhang D, Huo Q. Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.04.073] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
An electrochemical glutathione biosensor: Ubiquinone as a transducer. Talanta 2013; 110:15-20. [DOI: 10.1016/j.talanta.2013.03.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/09/2013] [Accepted: 03/14/2013] [Indexed: 11/20/2022]
|
30
|
Ndamanisha JC, Guo LP. Ordered mesoporous carbon for electrochemical sensing: A review. Anal Chim Acta 2012; 747:19-28. [DOI: 10.1016/j.aca.2012.08.032] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/29/2012] [Accepted: 08/16/2012] [Indexed: 01/09/2023]
|
31
|
Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.05.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Harfield JC, Batchelor-McAuley C, Compton RG. Electrochemical determination of glutathione: a review. Analyst 2012; 137:2285-96. [DOI: 10.1039/c2an35090d] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Application of nanocrystalline graphite-like pyrolytic carbon film electrode for determination of thiols. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Meng Z, Liu B, Zheng J, Sheng Q, Zhang H. Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0688-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Salimi A, Hallaj R. Cobalt oxide nanostructure-modified glassy carbon electrode as a highly sensitive flow injection amperometric sensor for the picomolar detection of insulin. J Solid State Electrochem 2011. [DOI: 10.1007/s10008-011-1510-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Oztekin Y, Ramanaviciene A, Ramanavicius A. Electrochemical Glutathione Sensor Based on Electrochemically Deposited Poly-m-aminophenol. ELECTROANAL 2011. [DOI: 10.1002/elan.201000584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Mesoporous materials in sensing: morphology and functionality at the meso-interface. Anal Bioanal Chem 2010; 398:1565-73. [DOI: 10.1007/s00216-010-3688-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 01/23/2023]
|