1
|
Rudnicki K, Powałka E, Marciniak K, Rizwan M, Stelmaszczyk P, Wietecha-Posłuszny R, Poltorak L. Determination of hordenine in beer samples and bodybuilding supplement at the electrified liquid-liquid interface. Food Chem 2025; 478:143734. [PMID: 40073602 DOI: 10.1016/j.foodchem.2025.143734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/02/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
This paper presents an electrochemical approach to quantitative and qualitative determination of hordenine (HODE) at the electrified liquid-liquid interface (eLLI). In this regard, we have employed ion transfer voltammetry (ITV) as an electroanalytical detection technique. The response of peak current values (positive or negative currents) increased linearly with HODE concentration in the studied concentration range from 28.49 to 1250 μM. Furthermore, the effect of pH (2-12) of the aqueous phase on recorded HODE signals was studied. Based on the obtained results a number of significant physicochemical parameters, such as the formal Galvani potential of the ion transfer reaction (∆orgaqΦ'), diffusion coefficients (D), formal free Gibbs energy of the ion transfer reaction (∆G'aq→org) and water-1,2-dichloroethane partition coefficient (logPDCE') were determined. Finally, we have also showed that the elaborated method can be successfully used in the electroanalysis of complex matrixes, especially: beer and bodybuilding supplement samples.
Collapse
Affiliation(s)
- Konrad Rudnicki
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Tamka 12, 91-403 Łódź, Poland.
| | - Emilia Powałka
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Tamka 12, 91-403 Łódź, Poland
| | - Karolina Marciniak
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Tamka 12, 91-403 Łódź, Poland
| | - Mohammad Rizwan
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Tamka 12, 91-403 Łódź, Poland
| | - Paweł Stelmaszczyk
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Lukasz Poltorak
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|
2
|
Teixeira SC, de Oliveira TV, de Fátima Ferreira Soares N, Raymundo-Pereira PA. Sustainable and biodegradable polymer packaging: Perspectives, challenges, and opportunities. Food Chem 2025; 470:142652. [PMID: 39787764 DOI: 10.1016/j.foodchem.2024.142652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
The escalating environmental impact of non-biodegradable plastic waste has intensified global efforts to seek sustainable alternatives, with biodegradable polymers from renewable sources emerging as a promising solution. This manuscript provides the current perspectives, challenges, and opportunities within the field of sustainable and biodegradable packaging. Despite a significant market presence of conventional non-biodegradable petrochemical-based plastics, there is a growing trend towards the adoption of bio-based polymers from renewable resources driven by environmental sustainability and regulatory measures. However, the transition to biodegradable packaging is fraught with challenges, including scalability, cost-effectiveness, technological limitations, comprehensive waste management systems, and infrastructural needs. The manuscript highlights the intrinsic technological challenges and the need for advancements in material science to enhance the performance and adoption of biodegradable packaging. This paper also supply insights into the development and implementation of biodegradable packaging, offering a comprehensive overview of its role in achieving global sustainability goals.
Collapse
Affiliation(s)
- Samiris Côcco Teixeira
- Food Technology Department, Universidade Federal de Viçosa, Avenida PH Holfs s/n, Campus Universitário, 36570-000 Viçosa, Minas Gerais, Brazil
| | - Taíla Veloso de Oliveira
- Food Technology Department, Universidade Federal de Viçosa, Avenida PH Holfs s/n, Campus Universitário, 36570-000 Viçosa, Minas Gerais, Brazil
| | - Nilda de Fátima Ferreira Soares
- Food Technology Department, Universidade Federal de Viçosa, Avenida PH Holfs s/n, Campus Universitário, 36570-000 Viçosa, Minas Gerais, Brazil.
| | - Paulo A Raymundo-Pereira
- São Carlos Institute of Physics, University of São Paulo, CEP, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Rabti A, Baachaoui S, Ghodbane O, Raouafi N. Laser-ablated graphene electrodes modified with redox melanin-like film for redox capacitive sensing via the scavenging of nitrite ions. Food Chem 2025; 469:142509. [PMID: 39719782 DOI: 10.1016/j.foodchem.2024.142509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
Improper use and harmful effects of nitrite ions pose a significant risk to human health. To address this concern, the use of carbon-based materials for electrochemical sensing is regarded as one of the most promising detection tools for ensuring the quality of drinking water and food products. In this context, we developed laser-ablated graphene electrodes (LAGEs) by direct laser scribing on a polyimide substrate, which were subsequently modified by electrochemical deposition of a redox-active melanin-like film (MeLF/LAGEs). Electrochemical investigations showed that the polymeric film had a beneficial effect on the heterogeneous electron transfer rate and induced an increase in the electrochemically active surface area and the charge capacitance of the modified electrodes owing to the newly added catechol and o-quinone moieties. Taking advantage of the redox activity of MeLF films, in-solution probe-free redox capacitance spectroscopy was used as a sensitive and highly adaptable method for sensing nitrite ions. Upon the interaction between the nitrite ions and the MeLF/LAGE redox interface, the charge distribution and its inherent redox capacitance were altered, which allowed the successful detection of nitrite ions with a detection limit of 2.45 μM (S/N = 3) and a wide dynamic range (10 μM to 10 mM). This sensor demonstrated high recovery rates when applied to tap and mineral water samples and five different processed meat samples, highlighting its potential for the routine detection of nitrite ions through scavenging.
Collapse
Affiliation(s)
- Amal Rabti
- National Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LR15INRAP03), Biotechpole Sidi Thabet, 2020 Sidi Thabet, Tunisia.
| | - Sabrine Baachaoui
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar, 2092 Tunis, Tunisia
| | - Ouassim Ghodbane
- National Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LR15INRAP03), Biotechpole Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar, 2092 Tunis, Tunisia.
| |
Collapse
|
4
|
Zhang J, Fang Z, Dong H, Liu Y, Chu Z, Mou Y, Jin W. MnFe@N-CNTs Based Lactate Biomicrochips for Nonintrusive and Onsite Periodontitis Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38593051 DOI: 10.1021/acsami.4c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In clinical settings, saliva has been established as a straightforward, noninvasive medium for diagnosing periodontitis. However, the precise diagnosis is often hampered by the absence of a specialized analyzer capable of detecting low concentrations of biomarkers typically found in saliva. In this study, we present a noninvasive, on-site screen-printed biomicrochip specifically engineered for the precise and sensitive quantification of lactate concentrations in saliva, a critical biomarker in the diagnosis of periodontitis. The microchip is constructed using a nanostructured ink formulation that includes MnFe@N-doped carbon nanotubes (MnFe@N-CNTs). These MnFe@N-CNTs exhibit a high degree of graphitization and low electrical resistance, significantly augmenting the electrocatalytic efficiency of the enzymatic reaction of lactate. This results in doubled sensitivity and a detection limit that surpasses those of the current advanced salivary assay methods. Remarkably, within just 30 s, the biomicrochip can quantitatively and precisely measure lactate concentrations in the saliva of 10 patients, which provides valuable insights into the severity of their periodontitis. This biosensor holds excellent potential for large-scale production and could broaden the scope of biomarker recognition, paving the way for the analysis of a wider range of oral diseases.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, P. R. China
| | - Zishuo Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, P. R. China
| | - Heng Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, P. R. China
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing 210008, P. R. China
| | - Yu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, P. R. China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, P. R. China
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing 210008, P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, P. R. China
| |
Collapse
|
5
|
Kang M, Huang S, Wang M, Oderinde O, Wang M, Zhang Z. Defective zirconium/titanium bimetallic metal-organic framework as a highly selective and sensitive electrochemical aptasensor for deoxynivalenol determination in foodstuffs. Mikrochim Acta 2023; 190:358. [PMID: 37603114 DOI: 10.1007/s00604-023-05935-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
An electrochemical aptsensor for deoxynivalenol determination was successfully designed and constructed based on a defective bimetallic organic framework (denoted as ZrTi-MOF). The high porosity, large specific surface area, several structural defects, mixed metal clusters, and rich functionality of ZrTi-MOF markedly enhanced its electrochemical activity and facilitated the aptamer immobilization. As a result, the ZrTi-MOF-based aptasensor shows high sensitivity to detect deoxynivalenol via specific recognition between aptamer and deoxynivalenol, as well as the formation of aptamer-deoxynivalenol complex. On this basis, the developed ZrTi-MOF-based impedimetric aptasensor showed a low detection limit of 0.24 fg mL-1 for deoxynivalenol determination in the deoxynivalenol concentration range 1 fg mL-1- 1 ng mL-1 under optimized conditions, which also exhibited satisfactory selectivity, stability, reproducibility, and regenerability. Furthermore, determination of deoxynivalenol was achieved in bread and wheat flour samples via the developed ZrTi-MOF-based deoxynivalenol aptasensor. The result from this study showed that the ZrTi-MOF-based electrochemical aptasensor could become a promising strategy for detecting deoxynivalenol in foodstuffs in the future.
Collapse
Affiliation(s)
- Mengmeng Kang
- School of Material Science and Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| | - Shunjiang Huang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Mengfei Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
6
|
Wang L, Song Z, Zhu L, Jiang J. Fast electrochemical impedance spectroscopy of lithium-ion batteries based on the large square wave excitation signal. iScience 2023; 26:106463. [PMID: 37091253 PMCID: PMC10119603 DOI: 10.1016/j.isci.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Electrochemical impedance spectroscopy (EIS) is a technique for electrochemical characterization that is sensitive to the battery state and can uncover multidimensional electrochemical evolution information within the battery. Lithium-ion batteries usually need to be used in conjunction with power conversion circuits, while conventional EIS testing is conducted offline and is time-consuming, which cannot effectively monitor the battery characteristics during use. To match the characteristics of the square wave signal during power switching, a rapid EIS measurement method for lithium-ion batteries based on the large square wave excitation signal is proposed in this paper, and develops a testing device with a response time of microseconds. The proposed method and device are applied to estimate the state of health (SOH) of the battery. In conclusion, we proposed method enhances the capabilities of EIS testing technology and has a good application prospect in real-time online impedance monitoring.
Collapse
Affiliation(s)
- Lujun Wang
- Hubei University of Technology, Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Wuhan 430068, Hubei Province, China
| | - Ziang Song
- Hubei University of Technology, Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Wuhan 430068, Hubei Province, China
| | - Lijun Zhu
- Hubei University of Technology, Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Wuhan 430068, Hubei Province, China
| | - Jiuchun Jiang
- Hubei University of Technology, Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Wuhan 430068, Hubei Province, China
- Corresponding author
| |
Collapse
|
7
|
AbdelHamid A, Elgamouz A, Khanfer M, Kawde AN. COVID-19 Chloroquine Drug Detection Using Novel, Highly Sensitive SnO2-Based Electrochemical Sensor. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
8
|
Ngadiwiyana, Gunawan, Prasetya NB, Kusworo TD, Susanto H. Synthesis and characterization of sulfonated poly(eugenol-co-allyleugenol) membranes for proton exchange membrane fuel cells. Heliyon 2022; 8:e12401. [PMID: 36590487 PMCID: PMC9801125 DOI: 10.1016/j.heliyon.2022.e12401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The research of sulfonated eugenol-allyleugenol copolymer (SPEAE) based membrane for fuel cell from eugenol derivate had been conducted. First, eugenol was reacted with various weights of allyl eugenol to form eugenol-allyleugenol copolymer (PEAE). Determination of the optimum composition of PEAE was done by testing the swelling properties. Then, PEAE was sulfonated using concentrated sulfuric acid with time variations of 1, 2, 3, 4, and 5 h to form SPEAE. The SPEAE produced was tested for the degree of sulfonation, water uptake, cation exchange capacity, and membrane proton conductivity. In addition, the characteristics of the PEAE and SPEAE copolymer membranes were also analyzed using FTIR spectrophotometers, 1H-NMR, TGA, and DSC. The results showed that the copolymerization of eugenol:allyleugenol (EG:AEG) with a ratio of 10:1 gave the lowest swelling degree. The best SPEAE copolymer was obtained from sulfonation for 2 h with yield, degree of sulfonation, water absorption value, proton conductivity, and cation exchange capacity of 90.6%, 12.87%, 50.7%, 1.83 × 10-5 S cm-1 and 0.356 meq/g, respectively. FTIR analysis shows the formation of PEAE with the loss of the vinyl eugenol groups used to form the polymer and shows the formation of SPEAE in the presence of sulfonate groups from the sulfonation reaction. 1H-NMR also confirmed the presence of the PEAE and SPEAE copolymers. In addition, analysis of thermal properties with TGA and DSC also showed that sulfonate treatment could improve membrane stability.
Collapse
Affiliation(s)
- Ngadiwiyana
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia,Corresponding author.
| | - Gunawan
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia,Corresponding author.
| | - Nor B.A. Prasetya
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
| | - Tutuk D. Kusworo
- Chemical Engineering Departement, Faculty of Engineering, Diponegoro University, Semarang, Central Java, Indonesia
| | - Heru Susanto
- Chemical Engineering Departement, Faculty of Engineering, Diponegoro University, Semarang, Central Java, Indonesia
| |
Collapse
|
9
|
Nagles E, Bello M, Hurtado JJ. Electrochemical Determination of Morin in Natural Food Using a Chitosan-Graphene Glassy Carbon Modified Electrode. SENSORS (BASEL, SWITZERLAND) 2022; 22:7780. [PMID: 36298130 PMCID: PMC9608833 DOI: 10.3390/s22207780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
This report presents a new application for the chitosan-graphene glassy carbon electrode (Ch-G/GCE) system in the determination of the hydroxyflavonoid morin (MR), one of the flavonoids with the highest favorable activity for people, due to its natural properties by square-wave voltammetry (SWV). The anodic peak current for MR was observed at 0.50 V with an increase of 73% compared with the glassy carbon electrode unmodified. The surface areas of Ch-G/GCE, Ch/GCE and GCE evaluated by cyclic voltammetry were 0.140, 0.053 and 0.011 cm2, respectively. Additionally, an increase greater than 100% compared to the electrode without modification was observed. The detection limit was 0.30 µmol/L for MR, and the relative standard deviations (RSDs) were 1.8% (n = 6). Possible interferences as quercetin, rutin, and applications in real samples were also evaluated with very acceptable results.
Collapse
Affiliation(s)
- Edgar Nagles
- Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Monica Bello
- Facultad de Ciencias Naturales y Matemáticas, Universidad Nacional Federico Villareal, Lima 15001, Peru
| | - John J. Hurtado
- Departamento de Química, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogota 111711, Colombia
| |
Collapse
|
10
|
Abad-Gil L, Brett CM. Poly(methylene blue)-ternary deep eutectic solvent/Au nanoparticle modified electrodes as novel electrochemical sensors: optimization, characterization and application. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Heydari Foroushani P, Rahmani E, Alemzadeh I, Vossoughi M, Pourmadadi M, Rahdar A, Díez-Pascual AM. Curcumin Sustained Release with a Hybrid Chitosan-Silk Fibroin Nanofiber Containing Silver Nanoparticles as a Novel Highly Efficient Antibacterial Wound Dressing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3426. [PMID: 36234554 PMCID: PMC9565735 DOI: 10.3390/nano12193426] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 05/15/2023]
Abstract
Drug loading in electrospun nanofibers has gained a lot of attention as a novel method for direct drug release in an injury site to accelerate wound healing. The present study deals with the fabrication of silk fibroin (SF)-chitosan (CS)-silver (Ag)-curcumin (CUR) nanofibers using the electrospinning method, which facilitates the pH-responsive release of CUR, accelerates wound healing, and improves mechanical properties. Response surface methodology (RSM) was used to investigate the effect of the solution parameters on the nanofiber diameter and morphology. The nanofibers were characterized via Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), zeta potential, and Dynamic Light Scattering (DLS). CS concentration plays a crucial role in the physical and mechanical properties of the nanofibers. Drug loading and entrapment efficiencies improved from 13 to 44% and 43 to 82%, respectively, after the incorporation of Ag nanoparticles. The application of CS hydrogel enabled a pH-responsive release of CUR under acid conditions. The Minimum Inhibitory Concentration (MIC) assay on E. coli and S. aureus bacteria showed that nanofibers with lower CS concentration cause stronger inhibitory effects on bacterial growth. The nanofibers do not have any toxic effect on cell culture, as revealed by in vitro wound healing test on NIH 3T3 fibroblasts.
Collapse
Affiliation(s)
- Parisa Heydari Foroushani
- Department of Chemical Engineering, Biomedical and Bioenvironmental Research Center (BBRC), Sharif University of Technology, Tehran 14179-35840, Iran
| | - Erfan Rahmani
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA
| | - Iran Alemzadeh
- Department of Chemical Engineering, Biomedical and Bioenvironmental Research Center (BBRC), Sharif University of Technology, Tehran 14179-35840, Iran
| | - Manouchehr Vossoughi
- Department of Chemical Engineering, Biomedical and Bioenvironmental Research Center (BBRC), Sharif University of Technology, Tehran 14179-35840, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
12
|
Jang M, Kim HD, Koo HJ, So JH. Textile-Based Wearable Sensor for Skin Hydration Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22186985. [PMID: 36146334 PMCID: PMC9500932 DOI: 10.3390/s22186985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 05/14/2023]
Abstract
This research describes a wearable skin hydration sensor based on cotton textile to determine the state of hydration within the skin via impedance analysis. The sensor structure comprises a textile substrate, thermoplastic over-layer, conductive patterns, and encapsulant, designed for stable and reliable monitoring of the skin's impedance change in relation to hydration level. The porcine skin with different hydration levels was prepared as a model system of the skin, and the textile-based sensor carefully investigated the porcine skin samples' impedance characteristics. The impedance study reveals that (1) the total impedance of skin decreases as its hydration level increases, and (2) the impedance of the stratum corneum and epidermis layers are more dominantly affected by the hydration level of the skin than the dermis layer. Even after repetitive bending cycles, the impedance data of skin measured by the sensor exhibit a reliable dependence on the skin hydration level, which validates the flexibility and durability of the sensor. Finally, it is shown that the textile-based skin hydration sensor can detect various body parts' different hydration levels of human skin while maintaining a stable conformal contact with the skin. The resulting data are well-matched with the readings from a commercial skin hydration sensor.
Collapse
Affiliation(s)
- Minju Jang
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology, 143 Hanggaul-ro, Sangnok-gu, Ansan 15588, Korea
- Department of Fiber System Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin 16890, Korea
| | - Ho-Dong Kim
- Department of Fiber System Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin 16890, Korea
| | - Hyung-Jun Koo
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
- Department of New and Renewable Energy Convergence, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
- Correspondence: (H.-J.K.); (J.-H.S.)
| | - Ju-Hee So
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology, 143 Hanggaul-ro, Sangnok-gu, Ansan 15588, Korea
- Correspondence: (H.-J.K.); (J.-H.S.)
| |
Collapse
|
13
|
Liang X, Zhou Y, Brett CM. Electropolymerisation of brilliant cresyl blue and neutral red on carbon-nanotube modified electrodes in binary and ternary deep eutectic solvents. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Cheraghi S, Taher MA, Karimi-Maleh H, Karimi F, Shabani-Nooshabadi M, Alizadeh M, Al-Othman A, Erk N, Yegya Raman PK, Karaman C. Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. CHEMOSPHERE 2022; 287:132187. [PMID: 34509007 DOI: 10.1016/j.chemosphere.2021.132187] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
In this work, we report a novel enzymatic biosensor based on glutathione peroxidase (GSH-Px), graphene oxide (GO) and nafion for the electrochemical sensing of glutathione (GSH) in body fluids. GSH-Px was immobilized covalently via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto modified glassy carbon electrode (GCE) decorated with GO and nafion and successfully used for sensing of GSH in the presence of H2O2 as catalyst with Michaelis-Menten constant about 0.131 mmol/L. The active surface are of GCE improve from 0.183 cm2 to 0.225 cm2 after modification with GO. The introduced biosensor (GSH-Px/GO/nafion/GCE) was used for monitoring of GSH over the range 0.003-370.0 μM, with a detection limit of 1.5 nM using differential pulse voltammetric (DPV) method. The GSH-Px/GO/nafion/GCE was successfully applied to the determination of GSH in real samples.
Collapse
Affiliation(s)
- Somaye Cheraghi
- Iran National Science Foundation (INSF), Tehran, Iran; Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| | - Mohammad A Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| | - H Karimi-Maleh
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Fatmeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | | | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, Turkey.
| |
Collapse
|
15
|
Mazurków JM, Kusior A, Radecka M. Electrochemical Characterization of Modified Glassy Carbon Electrodes for Non-Enzymatic Glucose Sensors. SENSORS 2021; 21:s21237928. [PMID: 34883931 PMCID: PMC8659783 DOI: 10.3390/s21237928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 01/07/2023]
Abstract
The diversity of materials proposed for non-enzymatic glucose detection and the lack of standardized protocols for assessing sensor performance have caused considerable confusion in the field. Therefore, methods for pre-evaluation of working electrodes, which will enable their conscious design, are currently intensively sought. Our approach involved comprehensive morphologic and structural characterization of copper sulfides as well as drop-casted suspensions based on three different polymers-cationic chitosan, anionic Nafion, and nonionic polyvinylpyrrolidone (PVP). For this purpose, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy were applied. Subsequently, comparative studies of electrochemical properties of bare glassy carbon electrode (GCE), polymer- and copper sulfides/polymer-modified GCEs were performed using electrochemical impedance spectroscopy (EIS) and voltammetry. The results from EIS provided an explanation for the enhanced analytical performance of Cu-PVP/GCE over chitosan- and Nafion-based electrodes. Moreover, it was found that the pH of the electrolyte significantly affects the electrocatalytic behavior of copper sulfides, indicating the importance of OHads in the detection mechanism. Additionally, diffusion was denoted as a limiting step in the irreversible electrooxidation process that occurs in the proposed system.
Collapse
|
16
|
AL-Refai HH, Ganash AA, Hussein MA. Composite Nanoarchitectonics with Polythiophene, MWCNTs-G, CuO and Chitosan as a Voltammetric Sensor for Detection of Cd(II) Ions. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02125-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Silva LP, Silva TA, Moraes FC, Fatibello-Filho O. A voltammetric sensor based on a carbon black and chitosan-stabilized gold nanoparticle nanocomposite for ketoconazole determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4495-4502. [PMID: 34514492 DOI: 10.1039/d1ay01321a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A modified glassy carbon electrode with carbon black (CB) and gold nanoparticles (AuNPs) within a crosslinked chitosan (CTS) film is proposed in this work. The electroanalytical performance of the modified CB-CTS-AuNPs/GCE has been evaluated towards the voltammetric sensing of ketoconazole (KTO), a widespread antifungal drug. The nanocomposite was characterized by scanning electron microscopy, X-ray diffraction spectroscopy, and electrochemistry experiments. The evaluation of the electrochemical behaviour of KTO on the proposed modified electrode shows an irreversible oxidation process at a potential of +0.65 V (vs. Ag/AgCl (3.0 mol L-1 KCl)). This redox process was explored to carry out KTO sensing using square-wave voltammetry. The analytical curve was linear in the KTO concentration range from 0.10 to 2.9 μmol L-1, with a limit of detection (LOD) of 4.4 nmol L-1 and a sensitivity of 3.6 μA L μmol-1. This modified electrode was successfully applied to the determination of KTO in pharmaceutical formulations and biological fluid samples.
Collapse
Affiliation(s)
- Laís Pereira Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil.
| | - Tiago Almeida Silva
- Department of Chemistry, Federal University of Viçosa, Minas Gerais, 36570-900, Brazil
| | - Fernando Cruz Moraes
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil.
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil.
| |
Collapse
|
18
|
da Silva W, Brett CM. Electrosynthesis and characterisation of novel poly(Nile blue)-deep eutectic solvent/Prussian blue nanoparticle modified electrodes and their biosensing application. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Piton GR, Augusto KKL, Wong A, Moraes FC, Fatibello‐Filho O. A Novel Electrochemical Glassy Carbon Electrode Modified with Carbon Black and Glyceline Deep Eutectic Solvent within a Crosslinked Chitosan Film for Simultaneous Determination of Acetaminophen and Diclofenac. ELECTROANAL 2021. [DOI: 10.1002/elan.202100325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gabriela R. Piton
- Department of Chemistry Federal University of São Carlos C.P. 676 13560-970 São Carlos SP Brazil
| | - Karen K. L. Augusto
- Department of Chemistry Federal University of São Carlos C.P. 676 13560-970 São Carlos SP Brazil
| | - Ademar Wong
- Department of Chemistry Federal University of São Carlos C.P. 676 13560-970 São Carlos SP Brazil
| | - Fernando C. Moraes
- Department of Chemistry Federal University of São Carlos C.P. 676 13560-970 São Carlos SP Brazil
| | - Orlando Fatibello‐Filho
- Department of Chemistry Federal University of São Carlos C.P. 676 13560-970 São Carlos SP Brazil
| |
Collapse
|
20
|
Huang S, Chen R, Zhao S, Wang C, Jia Q, Wang M, Zhang Z, He L, Zhang Z. Diverse metal ions-doped titanium-based metal-organic frameworks as novel bioplatforms for sensitively detecting bisphenol A. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Baykal B, Kadikoylu G, Senturk H, Donar YO, Sınağ A, Erdem A. Preparation and characterization gallic acid-titanium dioxide nanocomposites for biosensing application on voltammetric detection of DNA. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Ahmad HMN, Dutta G, Csoros J, Si B, Yang R, Halpern JM, Seitz WR, Song E. Stimuli-Responsive Templated Polymer as a Target Receptor for a Conformation-based Electrochemical Sensing Platform. ACS APPLIED POLYMER MATERIALS 2021; 3:329-341. [PMID: 33748761 PMCID: PMC7971449 DOI: 10.1021/acsapm.0c01120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The use of highly crosslinked molecularly imprinted polymers as a synthetic target receptor has the limitations of restricted accessibility to the binding sites resulting in slow response time. Moreover, such artificial receptors often require additional transduction mechanisms to translate target binding events into measurable signals. Here, we propose the development of a single-chain stimuli-responsive templated polymer, without using any covalent interchain crosslinkers, as a target recognition element. The synthesized polymer chain exhibits preferential binding with the target molecule with which the polymer is templated. Moreover, upon specific target recognition, the polymer undergoes conformation change induced by its particular stimuli responsiveness, namely the target binding event. Such templated single-chain polymers can be attached to the electrode surface to implement a label-free electrochemical sensing platform. A target analyte, 4-nitrophenol (4-NP), was used as a template to synthesize a poly-N-isopropylacrylamide (PNIPAM)-based copolymer chain which was anchored to the electrode to be used as a selective receptor for 4-NP. The electrode surface chemistry analysis and the electrochemical impedance study reveal that the polymer concentration, the interchain interactions, and the Hofmeister effect play a major role in influencing the rate of polymer grafting as well as the morphology of the polymers grafted to the electrode. We also show that the specific binding between 4-NP and the copolymer results in a substantial change in the charge transfer kinetics at the electrode signifying the polymer conformation change.
Collapse
Affiliation(s)
- Habib M. N. Ahmad
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - Gaurab Dutta
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - John Csoros
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, United States
| | - Bo Si
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, United States
| | - Rongfang Yang
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, United States
| | - Jeffrey M. Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - W. Rudolf Seitz
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, United States
| | - Edward Song
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, United States
- Materials Science Program, University of New Hampshire, Durham, NH 03824, United States
- Corresponding Author: Edward Song, . Phone: +1-603-862-5498
| |
Collapse
|
23
|
Kouchar S, Benounis M, Jaffrezic-Renault N. New selective modified glassy carbon electrode based on 6-furfurylaminopurine ligand for cadmium detection in real samples. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02722-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Joseph T, Thomas J, Thomas T, Thomas N. Selective nanomolar electrochemical detection of serotonin, dopamine and tryptophan using TiO 2/RGO/CPE – influence of reducing agents. NEW J CHEM 2021. [DOI: 10.1039/d1nj03697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TiO2/RGO nanocomposites were synthesised via a simple one-pot hydrothermal method and used as a modifier in carbon paste electrode for the sensitive determination of serotonin.
Collapse
Affiliation(s)
- Teena Joseph
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| | - Jasmine Thomas
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| | - Tony Thomas
- Department of Chemistry, Deva Matha College, Kuravilangad, Kottayam, Kerala, India
| | - Nygil Thomas
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| |
Collapse
|
25
|
Liu J, Wan TH, Ciucci F. A Bayesian view on the Hilbert transform and the Kramers-Kronig transform of electrochemical impedance data: Probabilistic estimates and quality scores. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136864] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Negm NA, Abubshait HA, Abubshait SA, Abou Kana MTH, Mohamed EA, Betiha MM. Performance of chitosan polymer as platform during sensors fabrication and sensing applications. Int J Biol Macromol 2020; 165:402-435. [PMID: 33007321 DOI: 10.1016/j.ijbiomac.2020.09.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Chitosan is an important polymer produced from deacetylation of several sea and insects crusts. Due to its environmental fate and biological biocompatibility, it can be used in several biological and environmental applications. Sensing of biological compounds in human bodies and also in serum, blood, and different body fluids has found an important application instead of direct determination of the body fluids using complicated tools. Sensing process of biological compounds during bio-analysis of the biological systems, especially human fluids lack of several parameters including: high sensitivity, repeatability, speed of analysis and biocompatibility of the used analytical methods, especially in-vivo analysis. That was due to the time between sample handling and sample determination can change various components and concentrations of the bio-compounds. The need for in-situ analysis was directed the researchers for biosensors to overcome the upgrading problems of bio-analysis. Biosensors were the future of this issue. Chitosan can reserve as great platform for fabrication of different sensors to determine the elements, compounds and body bioactive compounds. The presence of different terminal amino and hydroxyl groups within chitosan framework facilitates the immobilization of different biomarkers to be used as sensing elements for the determined compounds. The use of chitosan as sensors platform was enhanced by using chitosan in its nanoforms.
Collapse
Affiliation(s)
- Nabel A Negm
- Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.
| | - Haya A Abubshait
- Basic Sciences Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Samar A Abubshait
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Maram T H Abou Kana
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Egypt
| | - Eslam A Mohamed
- Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | | |
Collapse
|
27
|
Du D, Shu J, Guo M, Haghighatbin MA, Yang D, Bian Z, Cui H. Potential-Resolved Differential Electrochemiluminescence Immunosensor for Cardiac Troponin I Based on MOF-5-Wrapped CdS Quantum Dot Nanoluminophores. Anal Chem 2020; 92:14113-14121. [DOI: 10.1021/acs.analchem.0c03131] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dexin Du
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiangnan Shu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingquan Guo
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mohammad A. Haghighatbin
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Di Yang
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Zhiping Bian
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
28
|
da Silva W, Queiroz AC, Brett CM. Nanostructured Poly(Phenazine)/Fe2O3 nanoparticle film modified electrodes formed by electropolymerization in ethaline - Deep eutectic solvent. Microscopic and electrochemical characterization. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136284] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
|
30
|
Rameshthangam P, Solairaj D, Arunachalam G, Ramasamy P. Chitin and Chitinases: Biomedical And Environmental Applications of Chitin and its Derivatives. ACTA ACUST UNITED AC 2020. [DOI: 10.14302/issn.2690-4829.jen-18-2043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disposal of chitin wastes from crustacean shell can cause environmental and health hazards. Chitin is a well known abundant natural polymer extracted after deproteinization and demineralization of the shell wastes of shrimp, crab, lobster, and krill. Extraction of chitin and its derivatives from waste material is one of the alternative ways to turn the waste into useful products. Chitinases are enzymes that degrade chitin. Chitinases contribute to the generation of carbon and nitrogen in the ecosystem. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications. The presence of surface charge and multiple functional groups make chitin as a beneficial natural polymer. Due to the reactive functional groups chitin can be used for the preparation of a spectrum of chitin derivatives such as chitosan, alkyl chitin, sulfated chitin, dibutyryl chitin and carboxymethyl chitin for specific applications in different areas. The present review is aimed to summarize the efficacy of the chitinases on the chitin and its derivatives and their diverse applications in biomedical and environmental field. Further this review also discusses the synthesis of various chitin derivatives in detail and brings out the importance of chitin and its derivatives in biomedical and environmental applications.
Collapse
Affiliation(s)
| | - Dhanasekaran Solairaj
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamilnadu, India
| | - Gnanapragasam Arunachalam
- College of Poultry Productions and Management, Tamil Nadu Veterinary and Animal Sciences University, Hosur - 635 110, Tamil Nadu, India
| | - Palaniappan Ramasamy
- Director- Research, Sree Balaji Medical College and Hospital, BIHER- Bharath University, Chennai-600041, Tamil Nadu, India
| |
Collapse
|
31
|
Sullivan C, Lu D, Brack E, Drew C, Kurup P. Voltammetric codetection of arsenic(III) and copper(II) in alkaline buffering system with gold nanostar modified electrodes. Anal Chim Acta 2020; 1107:63-73. [DOI: 10.1016/j.aca.2020.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 11/29/2022]
|
32
|
Silva TA, Wong A, Fatibello-Filho O. Electrochemical sensor based on ionic liquid and carbon black for voltammetric determination of Allura red colorant at nanomolar levels in soft drink powders. Talanta 2020; 209:120588. [DOI: 10.1016/j.talanta.2019.120588] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
|
33
|
Aftab S, Bakirhan NK, Esim O, Shah A, Savaser A, Ozkan Y, Ozkan SA. NH2-fMWCNT-titanium dioxide nanocomposite based electrochemical sensor for the voltammetric assay of antibiotic drug nadifloxacin and its in vitro permeation study. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Rosli NAH, Loh KS, Wong WY, Yunus RM, Lee TK, Ahmad A, Chong ST. Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids. Int J Mol Sci 2020; 21:ijms21020632. [PMID: 31963607 PMCID: PMC7014316 DOI: 10.3390/ijms21020632] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/02/2023] Open
Abstract
Perfluorosulphonic acid-based membranes such as Nafion are widely used in fuel cell applications. However, these membranes have several drawbacks, including high expense, non-eco-friendliness, and low proton conductivity under anhydrous conditions. Biopolymer-based membranes, such as chitosan (CS), cellulose, and carrageenan, are popular. They have been introduced and are being studied as alternative materials for enhancing fuel cell performance, because they are environmentally friendly and economical. Modifications that will enhance the proton conductivity of biopolymer-based membranes have been performed. Ionic liquids, which are good electrolytes, are studied for their potential to improve the ionic conductivity and thermal stability of fuel cell applications. This review summarizes the development and evolution of CS biopolymer-based membranes and ionic liquids in fuel cell applications over the past decade. It also focuses on the improved performances of fuel cell applications using biopolymer-based membranes and ionic liquids as promising clean energy.
Collapse
Affiliation(s)
- Nur Adiera Hanna Rosli
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Kee Shyuan Loh
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
- Correspondence:
| | - Wai Yin Wong
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Rozan Mohamad Yunus
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Tian Khoon Lee
- Department of Chemistry–Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden;
| | - Azizan Ahmad
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia;
| | - Seng Tong Chong
- College of Energy Economics and Social Sciences, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| |
Collapse
|
35
|
Rosenberger AG, Dragunski DC, Muniz EC, Módenes AN, Alves HJ, Tarley CRT, Machado SAS, Caetano J. Electrospinning in the preparation of an electrochemical sensor based on carbon nanotubes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Solvent free synthesis of ferrocene based rhodamine – hydrazone molecular probe with improved bioaccumulation for sensing and imaging applications. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Jayanthi Kalaivani G, Suja SK. Nanomolar level sensing of glucose in food samples using glucose oxidase confined MWCNT-Inulin-TiO 2 bio-nanocomposite. Food Chem 2019; 298:124981. [PMID: 31260993 DOI: 10.1016/j.foodchem.2019.124981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 11/17/2022]
Abstract
Development of an effective sensor for sensing glucose in commercially available "sugar free" food products is important as people are becoming diabetic health conscious. Although multi-walled carbon nanotubes (MWCNTs) possess interesting electrical properties, their hydrophobic nature limits their applications. Their hydrophilicity can be improved through modification. In the present study, Inulin, that was isolated from Allium sativum L. using hot water diffusion and incorporated with titanium dioxide (TiO2), was used for the modification of MWCNTs. The as-synthesized MWCNT-Inulin-TiO2 bio-nanocomposite immobilized with glucose oxidase (GOx) was incorporated into the carbon paste matrix and was utilized for the sensing of glucose in food products. Differential pulse voltammetric studies revealed that the fabricated electrode demonstrated good linear range (1.6 nM to 1 μM) and was sensitive to nanomolar concentrations of glucose with a very low limit of detection up to 0.82 nM and exhibited a long term stability of 150 days.
Collapse
Affiliation(s)
| | - S K Suja
- Department of Chemistry, Lady Doak College, Madurai, India.
| |
Collapse
|
38
|
Palygorskite modified with N-doped carbon for sensitive determination of lead(II) by differential pulse anodic stripping voltammetry. Mikrochim Acta 2019; 186:706. [PMID: 31637521 DOI: 10.1007/s00604-019-3843-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
A glassy carbon electrode (GCE) was coated with N-doped carbon-modified palygorskite and used as an electrochemical sensor for determination of Pb(II) by differential pulse anodic stripping voltammetry. To obtain high reproducibility and sensitivity, optimum experimental conditions for lead deposition are studied. Voltammetric responses of the modified GCE prepared with different ratios of carbon and palygorskite are examined under same conditions. Compared with a bare GCE, a N-doped carbon modified/GCE and a bismuth-modified GCE, N-doped carbon-modified palygorskite greatly improves the performance of GCE. Response is the best and the interfacial impedance is minimized if the fraction of carbon coating is 31%. This indicates that its performance is due to the synergies between palygorskite and N-doped carbon. Figures of merit for the modified GCE include (a) a preconcentration time of 180 s, (b) a detection limit of 0.42 μg·L-1 (2σ criterion), and (c) a linear response in the 4.0 μg·L-1 to 10.0 mg·L-1 Pb(II) concentration range. The method is successfully applied to the determination of Pb(II) in spiked tape water and gives recoveries between 97.1 and 104.3%. Graphical abstract Schematic representation of different adsorption sites of Pb(II) and the optimal carbon content. The wide detection range is attributed to the synergetic effect of N-doped carbon modified palygorskite.
Collapse
|
39
|
da Silva W, Ghica ME, Brett CM. Novel nanocomposite film modified electrode based on poly(brilliant cresyl blue)-deep eutectic solvent/carbon nanotubes and its biosensing applications. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Aydın M, Aydın EB, Sezgintürk MK. A Highly Selective Poly(thiophene)‐graft‐Poly(methacrylamide) Polymer Modified ITO Electrode for Neuron Specific Enolase Detection in Human Serum. Macromol Biosci 2019; 19:e1900109. [DOI: 10.1002/mabi.201900109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/31/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Muhammet Aydın
- Tekirdagˇ Namık Kemal UniversityScientific and Technological Research Center Tekirdagˇ 59000 Turkey
| | - Elif Burcu Aydın
- Tekirdagˇ Namık Kemal UniversityScientific and Technological Research Center Tekirdagˇ 59000 Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart UniversityFaculty of Engineering, Bioengineering Department Çanakkale 17000 Turkey
| |
Collapse
|
41
|
Azadmehr F, Zarei K. Fabrication of an imprinted electrochemical sensor from l-tyrosine, 3-methyl-4-nitrophenol and gold nanoparticles for quinine determination. Bioelectrochemistry 2019; 127:59-67. [DOI: 10.1016/j.bioelechem.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 11/26/2022]
|
42
|
Effect of Poly-l-Lysine Polycation on the Glucose Oxidase/Ferricyanide Composite-Based Second-Generation Blood Glucose Sensors. SENSORS 2019; 19:s19061448. [PMID: 30934546 PMCID: PMC6470914 DOI: 10.3390/s19061448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Second-generation glucose biosensors are presently the mainstream commercial solution for blood glucose measurement of diabetic patients. Screen-printed carbon electrodes (SPCEs) are the most-used substrate for glucose testing strips. This study adopted hydrophilic and positively charged α-poly-l-lysine (αPLL) as the entrapment matrix for the immobilization of negatively charged glucose oxidase (GOx) and ferricyanide (FIC) on SPCEs to construct a disposable second-generation glucose biosensor. The αPLL modification is shown to facilitate the redox kinetics of FIC and ferrocyanide on the SPCEs. The SPCEs coated with 0.5 mM GOx, 99.5 mM FIC, and 5 mM αPLL had better sensitivity for glucose detection due to the appreciable effect of protonated αPLL on the promotion of electron transfer between GOx and FIC. Moreover, the SPCEs coated with 0.5 mM GOx, 99.5 mM FIC, and 5 mM αPLL were packaged as blood glucose testing strips for the measurement of glucose-containing human serum samples. The glucose testing strips had good linearity from 2.8 mM to 27.5 mM and a detection limit of 2.3 mM. Moreover, the 5 mM αPLL-based glucose testing strips had good long-term stability to maintain GOx activity in aging tests at 50 °C.
Collapse
|
43
|
Gomes RN, Bezerra-Neto JR, Sousa CP, Medeiros SL, Becker H, Soares JES, de Lima-Neto P, Correia AN. Understanding the dipyrone oxidation allying electrochemical and computational approaches. Anal Chim Acta 2019; 1051:49-57. [DOI: 10.1016/j.aca.2018.11.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022]
|
44
|
Congur G, Eksin E, Erdem A. Chitosan modified graphite electrodes developed for electrochemical monitoring of interaction between daunorubicin and DNA. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2018.100255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
45
|
Stankevičius E, Garliauskas M, Laurinavičius L, Trusovas R, Tarasenko N, Pauliukaitė R. Engineering electrochemical sensors using nanosecond laser treatment of thin gold film on ITO glass. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
46
|
Folate-tagged chitosan-functionalized gold nanoparticles for enhanced delivery of 5-fluorouracil to cancer cells. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0896-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Dewangan S, Barik T, Mishra S, Mawatwal S, Kumari S, Giri S, Das S, Dhiman R, Wölper C, Chatterjee S. Half sandwich based rhodamine - hydrazone single molecule probe: Light responsive, metal sensing and imaging properties. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S. Dewangan
- Department of Chemistry; National Institute of Technology Rourkela; Orissa 769008 India
| | - T. Barik
- Department of Chemistry; National Institute of Technology Rourkela; Orissa 769008 India
| | - S. Mishra
- Department of Chemistry; National Institute of Technology Rourkela; Orissa 769008 India
| | - S. Mawatwal
- Department of Life Science; National Institute of Technology Rourkela; Orissa 769008 India
| | - S. Kumari
- Department of Life Science; National Institute of Technology Rourkela; Orissa 769008 India
| | - S. Giri
- Theoretical Chemistry Laboratory, Department of Chemistry; National Institute of Technology Rourkela; Orissa 769008 India
| | - S. Das
- Department of Life Science; National Institute of Technology Rourkela; Orissa 769008 India
| | - R. Dhiman
- Department of Life Science; National Institute of Technology Rourkela; Orissa 769008 India
| | - C. Wölper
- Department for X-Ray Diffraction; Institut für Anorganische Chemie, Universität Duisburg-Essen; D-45117 Essen Germany
| | - S. Chatterjee
- Department of Chemistry; National Institute of Technology Rourkela; Orissa 769008 India
| |
Collapse
|
48
|
Carbamazepine coated silver nanoparticles for the simultaneous electrochemical sensing of specific food toxins. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Manoj D, Theyagarajan K, Saravanakumar D, Senthilkumar S, Thenmozhi K. Aldehyde functionalized ionic liquid on electrochemically reduced graphene oxide as a versatile platform for covalent immobilization of biomolecules and biosensing. Biosens Bioelectron 2018; 103:104-112. [DOI: 10.1016/j.bios.2017.12.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/03/2023]
|
50
|
Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol 2018; 110:110-123. [DOI: 10.1016/j.ijbiomac.2018.01.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 12/31/2022]
|