1
|
Yu J, Shukla G, Fornari RP, Arcelus O, Shodiev A, de Silva P, Franco AA. Gaining Insight into the Electrochemical Interface Dynamics in an Organic Redox Flow Battery with a Kinetic Monte Carlo Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107720. [PMID: 35841122 DOI: 10.1002/smll.202107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Finding low-cost and nontoxic redox couples for organic redox flow batteries is challenging due to unrevealed reaction mechanisms and side reactions. In this study, a 3D kinetic Monte Carlo model to study the electrode-anolyte interface of a methyl viologen-based organic redox flow battery is presented. This model captures various electrode processes, such as ionic displacement and degradation of active materials. The workflow consists of input parameters obtained from density functional theory calculations, a kinetic Monte Carlo algorithm to simulate the discharging process, and an electric double layer model to account for the electric field distribution near the electrode surface. Galvanostatic discharge is simulated at different anolyte concentrations and input current densities, which demonstrate that the model captured the formation of the electrical double layer due to ionic transport. The simulated electrochemical kinetics (potential, charge density) are found to be in agreement with the Nernst equation and the obtained EDL structure corresponded with published molecular dynamics results. The model's flexibility allows further applications of simulating the behavior of different redox couples and makes it possible to consider other molecular-scale phenomena. This study paves the way for computational screening of active species by assessing their potential kinetics in electrochemical environments.
Collapse
Affiliation(s)
- Jia Yu
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France
| | - Garima Shukla
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France
| | - Rocco Peter Fornari
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, Building 301, Kongens Lyngby, 2800, Denmark
| | - Oier Arcelus
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France
| | - Abbos Shodiev
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France
| | - Piotr de Silva
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, Building 301, Kongens Lyngby, 2800, Denmark
| | - Alejandro A Franco
- Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France
- ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, Paris, 75005, France
| |
Collapse
|
5
|
Mesgar M, Kaghazchi P, Jacob T, Pichardo-Pedrero E, Giesen M, Pichardo-Pedrero E, Giesen M, Ibach H, Luque NB, Schmickler W. Chlorine-enhanced surface mobility of Au(100). Chemphyschem 2013; 14:233-6. [PMID: 23081947 DOI: 10.1002/cphc.201200621] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Indexed: 11/06/2022]
Abstract
Motivated by experimental studies of two-dimensional Ostwald ripening on Au(100) electrodes in chlorine-containing electrolytes, we have studied diffusion processes using density functional theory. We find that chlorine has a propensity to temporary form AuCl complexes, which diffuse significantly faster than gold adatoms. With and without chlorine, the lowest activation energy is found for the exchange mechanism. Chlorine furthermore reduces the activation energy for the detachment from kink sites. Kinetic Monte Carlo simulations were performed on the basis of extensive density functional theory calculations. The island-decay rate obtained from these Monte Carlo simulations, as well as the decay rate obtained from the theoretical activation energies and frequency factors when inserted into analytical solutions for Ostwald ripening, are in agreement with experimental island-decay rates in chlorine-containing electrolytes.
Collapse
Affiliation(s)
- Mostafa Mesgar
- Institut für Elektrochemie, Universität Ulm, Albert-Einstein-Allee 47, D-89069 Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pareek A, Borodin S, Bashir A, Ankah GN, Keil P, Eckstein GA, Rohwerder M, Stratmann M, Gründer Y, Renner FU. Initiation and Inhibition of Dealloying of Single Crystalline Cu3Au (111) Surfaces. J Am Chem Soc 2011; 133:18264-71. [DOI: 10.1021/ja2054644] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aparna Pareek
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| | - Sergiy Borodin
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| | - Asif Bashir
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| | - Genesis Ngwa Ankah
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| | - Patrick Keil
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| | - Gerald A. Eckstein
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| | - Michael Rohwerder
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| | - Martin Stratmann
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| | - Yvonne Gründer
- European Synchrotron Radiation Facility, BP220, F-38043 Grenoble, France
| | - Frank Uwe Renner
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| |
Collapse
|
7
|
Boscoboinik JA, Kohlmeyer RR, Chen J, Tysoe WT. Efficient transport of gold atoms with a scanning tunneling microscopy tip and a linker molecule. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9337-44. [PMID: 21671579 DOI: 10.1021/la202134a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A thiophene-containing molecule attached to a scanning tunneling microscopy (STM) tip is used to transport gold atoms on a Au(111) surface. The molecule contains eight thiophene rings and therefore has sulfur atoms that are known to bind to gold atoms. Using a gold-coated tip, the molecules previously deposited on the surface bind to the lower-coordination gold atoms of the tip. When that tip is used to scan the surface, the still free thiophene rings (not all of the sulfur atoms bind to the tip) can attach to gold atoms from the surface and drag them along the scanning direction, depositing them either at the position where the tip changes its scanning direction or where the tip encounters an "up step", whichever event occurs first.
Collapse
Affiliation(s)
- J Anibal Boscoboinik
- Department of Chemistry and Biochemistry, Laboratory for Surface Studies, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | | | | | | |
Collapse
|