1
|
OpenEP: an open-source simulator for electroporation-based tumor treatments. Sci Rep 2021; 11:1423. [PMID: 33446750 PMCID: PMC7809294 DOI: 10.1038/s41598-020-79858-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Electroporation (EP), the increase of cell membrane permeability due to the application of electric pulses, is a universal phenomenon with a broad range of applications. In medicine, some of the foremost EP-based tumor treatments are electrochemotherapy (ECT), irreversible electroporation, and gene electrotransfer (GET). The electroporation phenomenon is explained as the formation of cell membrane pores when a transmembrane cell voltage reaches a threshold value. Predicting the outcome of an EP-based tumor treatment consists of finding the electric field distribution with an electric threshold value covering the tumor (electroporated tissue). Threshold and electroporated tissue are also a function of the number of pulses, constituting a complex phenomenon requiring mathematical modeling. We present OpenEP, an open-source specific purpose simulator for EP-based tumor treatments, modeling among other variables, threshold, and electroporated tissue variations in time. Distributed under a free/libre user license, OpenEP allows the customization of tissue type; electrode geometry and material; pulse type, intensity, length, and frequency. OpenEP facilitates the prediction of an optimal EP-based protocol, such as ECT or GET, defined as the critical pulse dosage yielding maximum electroporated tissue with minimal damage. OpenEP displays a highly efficient shared memory implementation by taking advantage of parallel resources; this permits a rapid prediction of optimal EP-based treatment efficiency by pulse number tuning.
Collapse
|
2
|
Miripour ZS, Aghaee P, Mahdavi R, Khayamian MA, Mamdouh A, Esmailinejad MR, Mehrvarz S, Yousefpour N, Namdar N, Mousavi-Kiasary SMS, Vajhi AR, Abbasvandi F, Hoseinpour P, Ghafari H, Abdolahad M. Nanoporous platinum needle for cancer tumor destruction by EChT and impedance-based intra-therapeutic monitoring. NANOSCALE 2020; 12:22129-22139. [PMID: 33119020 DOI: 10.1039/d0nr05993e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we present a new design on the Single Needle Electrochemical Therapy (SNEChT) method by introducing some major improvements, including a nanoporous platinum electrode, tunable in situ anode size that depends on the width and location of the tumor, and the capability of measuring the efficacy of therapy based in intra-therapeutic impedance recording by the same EChT needle. It could have significant implications in optimizing EChT operative conditions. The nanoporous Pt electrode increased the interactive surface with a tumor, and produced a higher amount of current with lower stimulating DC voltage. The tunable anode size prevents the over-acidification of treated or non-desired lesions. Hence, this feature reduced the over distribution of tissue. Monitoring the impedance during the therapy clearly informs us about the local destruction of the tumor in each location. Thus, we can be informed about the threshold of tissue acidosis with the lowest electrical stimulation. The insertion of one needle with a tunable anode length for both precise therapy and impedance-based intra-therapeutic monitoring will shed new light on the applications of EChT.
Collapse
Affiliation(s)
- Zohreh Sadat Miripour
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box: 14395/515, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kim HB, Chung JH. Incorporation of Reversible Electroporation Into Electrolysis Accelerates Apoptosis for Rat Liver Tissue. Technol Cancer Res Treat 2020; 19:1533033820948051. [PMID: 32985353 PMCID: PMC7534095 DOI: 10.1177/1533033820948051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tissue electrolysis is an alternative modality that uses a low intensity direct electric current passing through at least 2 electrodes within the tissue and resulting electrochemical products including chlorine and hydrogen. These products induce changes in pH around electrodes and cause dehydration resulting from electroosmotic pressure, leading to changes in microenvironment and thus metabolism of the tissues, yielding apoptosis. The procedure requires adequate time for electrochemical reactions to yield products sufficient to induce apoptosis of the tissues. Incorporation of electroporation into electrolysis can decrease the treatment time and enhance the efficiency of electrolytic ablation. Electroporation causes permeabilization in the cell membrane allowing the efflux of potassium ions and extension of the electrochemical area, facilitating the electrolysis process. However, little is known about the combined effects on apoptosis in liver ablation. In this study, we performed an immunohistochemical evaluation of apoptosis for the incorporation of electroporation into electrolysis in liver tissues. To do so, the study was performed with microelectrodes for fixed treatment time while the applied voltage varied to increase the applied total energy for electrolysis. The apoptotic rate for electrolytic ablation increased with enhanced applied energy. The apoptotic rate was 4.31 ± 1.73 times that of control in the synergistic combination compared to 1.49 ± 0.33 times that of the control in electrolytic ablation alone. Additionally, tissue structure was better preserved in synergistic combination ablation compared to electrolysis with an increment of 3.8 mA. Thus, synergistic ablation may accelerate apoptosis and be a promising modality for the treatment of liver tumors.
Collapse
Affiliation(s)
- Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea.,Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
|
5
|
Yang B, Chen Y, Shi J. Nanocatalytic Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901778. [PMID: 31328844 DOI: 10.1002/adma.201901778] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Indexed: 05/24/2023]
Abstract
Catalysis and medicine are often considered as two independent research fields with their own respective scientific phenomena. Promoted by recent advances in nanochemistry, large numbers of nanocatalysts, such as nanozymes, photocatalysts, and electrocatalysts, have been applied in vivo to initiate catalytic reactions and modulate biological microenvironments for generating therapeutic effects. The rapid growth of research in biomedical applications of nanocatalysts has led to the concept of "nanocatalytic medicine," which is expected to promote the further advance of such a subdiscipline in nanomedicine. The high efficiency and selectivity of catalysis that chemists strived to achieve in the past century can be ingeniously translated into high efficacy and mitigated side effects in theranostics by using "nanocatalytic medicine" to steer catalytic reactions for optimized therapeutic outcomes. Here, the rationale behind the construction of nanocatalytic medicine is eludicated based on the essential reaction factors of catalytic reactions (catalysts, energy input, and reactant). Recent advances in this burgeoning field are then comprehensively presented and the mechanisms by which catalytic nanosystems are conferred with theranostic functions are discussed in detail. It is believed that such an emerging catalytic therapeutic modality will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
6
|
Mokhtare A, Shiv Krishna Reddy M, Roodan VA, Furlani EP, Abbaspourrad A. The role of pH fronts, chlorination and physicochemical reactions in tumor necrosis in the electrochemical treatment of tumors: A numerical study. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Goldberg E, Suárez C, Alfonso M, Marchese J, Soba A, Marshall G. Cell membrane electroporation modeling: A multiphysics approach. Bioelectrochemistry 2018; 124:28-39. [DOI: 10.1016/j.bioelechem.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
8
|
Marino M, Olaiz N, Signori E, Maglietti F, Suárez C, Michinski S, Marshall G. pH fronts and tissue natural buffer interaction in gene electrotransfer protocols. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Luján E, Schinca H, Olaiz N, Urquiza S, Molina F, Turjanski P, Marshall G. Optimal dose-response relationship in electrolytic ablation of tumors with a one-probe-two-electrode device. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Olaiz N, Signori E, Maglietti F, Soba A, Suárez C, Turjanski P, Michinski S, Marshall G. Tissue damage modeling in gene electrotransfer: The role of pH. Bioelectrochemistry 2014; 100:105-11. [DOI: 10.1016/j.bioelechem.2014.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 02/05/2023]
|
11
|
McMahon S, Rochford J, Halpin Y, Manton JC, Harvey EC, Greetham GM, Clark IP, Rooney AD, Long C, Pryce MT. Controlled CO release using photochemical, thermal and electrochemical approaches from the amino carbene complex [(CO)5CrC(NC4H8)CH3]. Phys Chem Chem Phys 2014; 16:21230-3. [DOI: 10.1039/c4cp03758h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
The role of pH fronts in tissue electroporation based treatments. PLoS One 2013; 8:e80167. [PMID: 24278257 PMCID: PMC3836965 DOI: 10.1371/journal.pone.0080167] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/30/2013] [Indexed: 01/04/2023] Open
Abstract
Treatments based on electroporation (EP) induce the formation of pores in cell membranes due to the application of pulsed electric fields. We present experimental evidence of the existence of pH fronts emerging from both electrodes during treatments based on tissue EP, for conditions found in many studies, and that these fronts are immediate and substantial. pH fronts are indirectly measured through the evanescence time (ET), defined as the time required for the tissue buffer to neutralize them. The ET was measured through a pH indicator imaged at a series of time intervals using a four-cluster hard fuzzy-c-means algorithm to segment pixels corresponding to the pH indicator at every frame. The ET was calculated as the time during which the number of pixels was 10% of those in the initial frame. While in EP-based treatments such as reversible (ECT) and irreversible electroporation (IRE) the ET is very short (though enough to cause minor injuries) due to electric pulse characteristics and biological buffers present in the tissue, in gene electrotransfer (GET), ET is much longer, enough to denaturate plasmids and produce cell damage. When any of the electric pulse parameters is doubled or tripled the ET grows and, remarkably, when any of the pulse parameters in GET is halved, the ET drops significantly. Reducing pH fronts has relevant implications for GET treatment efficiency, due to a substantial reduction of plasmid damage and cell loss.
Collapse
|
13
|
Breton M, Mir LM. Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics 2011; 33:106-23. [PMID: 21812011 DOI: 10.1002/bem.20692] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/29/2011] [Indexed: 12/18/2022]
Abstract
New local treatments based on electromagnetic fields have been developed as non-surgical and minimally invasive treatments of tumors. In particular, short electric pulses can induce important non-thermal changes in cell physiology, especially the permeabilization of the cell membrane. The aim of this review is to summarize the present data on the electroporation-based techniques: electrochemotherapy (ECT), nanosecond pulsed electric fields (nsPEFs), and irreversible electroporation (IRE). ECT is a safe, easy, and efficient technique for the treatment of solid tumors that uses cell-permeabilizing electrical pulses to enhance the activity of a non-permeant (bleomycin) or low permeant (cisplatin) anticancer drug with a very high intrinsic cytotoxicity. The most interesting feature of ECT is its unique ability to selectively kill tumor cells without harming normal surrounding tissue. ECT is already used widely in the clinics in Europe. nsPEFs could represent a drug free, purely electrical cancer therapy. They allow the inhibition of tumor growth, and interestingly, nsPEF can target intracellular organelles. However, many questions remain on the mechanism of action of these pulses. Finally, IRE is a new ablation procedure using pulses that provoke the permanent permeabilization of the cells resulting in their death. This technique does not result in any thermal effect, which is its main advantage in current physical ablation technologies. For both the nsPEF and the IRE, the preservation of the normal tissue, which is characteristic of ECT, has not yet been shown and their safety and efficacy still have to be investigated thoroughly in vivo and in the clinics.
Collapse
Affiliation(s)
- Marie Breton
- Université Paris-Sud, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Orsay, F-91405; CNRS, Orsay, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, F-91405; Institut Gustave Roussy, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203, Villejuif 94805.
| | | |
Collapse
|
14
|
Blázquez-Castro A, Stockert JC, López-Arias B, Juarranz A, Agulló-López F, García-Cabañes A, Carrascosa M. Tumour cell death induced by the bulk photovoltaic effect of LiNbO3:Fe under visible light irradiation. Photochem Photobiol Sci 2011; 10:956-63. [DOI: 10.1039/c0pp00336k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|