1
|
Chen F, Wang J, Chen L, Lin H, Han D, Bao Y, Wang W, Niu L. A Wearable Electrochemical Biosensor Utilizing Functionalized Ti 3C 2T x MXene for the Real-Time Monitoring of Uric Acid Metabolite. Anal Chem 2024; 96:3914-3924. [PMID: 38387027 DOI: 10.1021/acs.analchem.3c05672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Wearable, noninvasive sensors enable the continuous monitoring of metabolites in sweat and provide clinical information related to an individual's health and disease states. Uric acid (UA) is a key indicator highly associated with gout, hyperuricaemia, hypertension, kidney disease, and Lesch-Nyhan syndrome. However, the detection of UA levels typically relies on invasive blood tests. Therefore, developing a wearable device for noninvasive monitoring of UA concentrations in sweat could facilitate real-time personalized disease prevention. Here, we introduce 1,3,6,8-pyrene tetrasulfonic acid sodium salt (PyTS) as a bifunctional molecule functionalized with Ti3C2Tx via π-π conjugation to design nonenzymatic wearable sensors for sensitive and selective detection of UA concentration in human sweat. PyTS@Ti3C2Tx provides many oxidation-reduction active groups to enhance the electrocatalytic ability of the UA oxidation reaction. The PyTS@Ti3C2Tx-based electrochemical sensor demonstrates highly sensitive detection of UA in the concentration range of 5 μM-100 μM, exhibiting a lower detection limit of 0.48 μM compared to the uricase-based sensor (0.84 μM). In volunteers, the PyTS@Ti3C2Tx-based wearable sensor is integrated with flexible microfluidic sweat sampling and wireless electronics to enable real-time monitoring of UA levels during aerobic exercise. Simultaneously, it allows for comparison of blood UA levels via a commercial UA analyzer. Herein, this study provides a promising electrocatalyst strategy for nonenzymatic electrochemical UA sensor, enabling noninvasive real-time monitoring of UA levels in human sweat and personalized disease prevention.
Collapse
Affiliation(s)
- Fan Chen
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinhao Wang
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Lijuan Chen
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Haoliang Lin
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Wang
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
2
|
Govindaraj M, Srivastava A, Muthukumaran MK, Tsai PC, Lin YC, Raja BK, Rajendran J, Ponnusamy VK, Arockia Selvi J. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int J Biol Macromol 2023; 253:126680. [PMID: 37673151 DOI: 10.1016/j.ijbiomac.2023.126680] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
This review discusses the most current developments and future perspectives in enzymatic and non-enzymatic glucose sensors, which have notably evolved over the preceding quadrennial period. Furthermore, a thorough exploration encompassed the sensor's intricate fabrication processes, the diverse range of materials employed, the underlying principles of detection, and an in-depth assessment of the sensors' efficacy in detecting glucose levels within essential bodily fluids such as human blood serums, urine, saliva, and interstitial fluids. It is worth noting that the accurate quantification of glucose concentrations within human blood has been effectively achieved by utilizing classical enzymatic sensors harmoniously integrated with optical and electrochemical transduction mechanisms. Monitoring glucose levels in various mediums has attracted exceptional attention from industrial to academic researchers for diabetes management, food quality control, clinical medicine, and bioprocess inspection. There has been an enormous demand for the creation of novel glucose sensors over the past ten years. Research has primarily concentrated on succeeding biocompatible and enhanced sensing abilities related to the present technologies, offering innovative avenues for more effective glucose sensors. Recent developments in wearable optical and electrochemical sensors with low cost, high stability, point-of-care testing, and online tracking of glucose concentration levels in biological fluids can aid in managing and controlling diabetes globally. New nanomaterials and biomolecules that can be used in electrochemical sensor systems to identify glucose concentration levels are developed thanks to advances in nanoscience and nanotechnology. Both enzymatic and non-enzymatic glucose electrochemical sensors have garnered much interest recently and have made significant strides in detecting glucose levels. In this review, we summarise several categories of non-enzymatic glucose sensor materials, including composites, non-precious transition metals and their metal oxides, hydroxides, precious metals and their alloys, carbon-based materials, conducting polymers, metal-organic framework (MOF)-based electrocatalysts, and wearable device-based glucose sensors deeply.
Collapse
Affiliation(s)
- Muthukumar Govindaraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Magesh Kumar Muthukumaran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Bharathi Kannan Raja
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jerome Rajendran
- Department of Electrical Engineering and Computer Science, The University of California, Irvine, CA 92697, United States
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - J Arockia Selvi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
3
|
Graphene Oxide Nanoribbons in Chitosan for Simultaneous Electrochemical Detection of Guanine, Adenine, Thymine and Cytosine. BIOSENSORS-BASEL 2020; 10:bios10040030. [PMID: 32230779 PMCID: PMC7236021 DOI: 10.3390/bios10040030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Herein, graphene oxide nanoribbons (GONRs) were obtained from the oxidative unzipping of multi-walled carbon nanotubes. Covalent coupling reaction of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxy succinimide (NHS) with amine functional groups (-NH2) of the chitosan natural polymer (CH) was used for entrapping GONRs on the activated glassy carbon electrode (GCE/GONRs-CH). The nanocomposite was characterized by high-resolution transmission electron microscopy (HRTEM), and field-emission scanning electron microscopy (FESEM). In addition, the modification steps were monitored using FTIR. The nanocomposite-modified electrode was used for the simultaneous electrochemical determination of four DNA bases; guanine (G), adenine (A), thymine (T) and cytosine (C). The nanocomposite-modified GCE displayed a strong, stable and continuous four oxidation peaks during electrochemistry detection at potentials 0.63, 0.89, 1.13 and 1.27 V for G, A, T and C, respectively. The calibration curves were linear up to 256, 172, 855 and 342 μM with detection limits of 0.002, 0.023, 1.330 and 0.641 μM for G, A, T and C, respectively. The analytical performance of the GCE/GONRs-CH has been used for the determination of G, A, T and C in real samples and obtained a recovery percentage from 91.1%-104.7%. Our preliminary results demonstrated that GCE/GONRs-CH provided a promising platform to detect all four DNA bases for future studies on DNA damage and mutations.
Collapse
|
4
|
Wang S, Ferrag C, Noroozifar M, Kerman K. Simultaneous Determination of Four DNA bases at Graphene Oxide/Multi-Walled Carbon Nanotube Nanocomposite-Modified Electrode. MICROMACHINES 2020; 11:mi11030294. [PMID: 32168840 PMCID: PMC7143941 DOI: 10.3390/mi11030294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
In this study, we developed a modified glassy carbon electrode (GCE) with graphene oxide, multi-walled carbon nanotube hybrid nanocomposite in chitosan (GCE/GO-MWCNT-CHT) to achieve simultaneous detection of four nucleobases (i.e., guanine (G), adenine (A), thymine (T) and cytosine (C)) along with uric acid (UA) as an internal standard. The nanocomposite was characterized using TEM and FT-IR. The linearity ranges were up to 151.0, 78.0, 79.5, 227.5, and 162.5 µM with a detection limit of 0.15, 0.12, 0.44, 4.02, 4.0, and 3.30 µM for UA, G, A, T, and C, respectively. Compared to a bare GCE, the nanocomposite-modified GCE demonstrated a large enhancement (~36.6%) of the electrochemical active surface area. Through chronoamperometric studies, the diffusion coefficients (D), standard catalytic rate constant (Ks), and heterogenous rate constant (Kh) were calculated for the analytes. Moreover, the nanocomposite-modified electrode was used for simultaneous detection in human serum, human saliva, and artificial saliva samples with recovery values ranging from 95% to 105%.
Collapse
Affiliation(s)
- Shuting Wang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (S.W.); (C.F.); (M.N.)
| | - Celia Ferrag
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (S.W.); (C.F.); (M.N.)
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (S.W.); (C.F.); (M.N.)
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (S.W.); (C.F.); (M.N.)
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Correspondence:
| |
Collapse
|
5
|
Wei M, Qiao Y, Zhao H, Liang J, Li T, Luo Y, Lu S, Shi X, Lu W, Sun X. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem Commun (Camb) 2020; 56:14553-14569. [DOI: 10.1039/d0cc05650b] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the development of electrocatalysts for non-enzymatic glucose detection. The sensing mechanism and influencing factors are discussed, and the perspectives and challenges are also addressed.
Collapse
Affiliation(s)
- Ming Wei
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Yanxia Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Haitao Zhao
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xifeng Shi
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| |
Collapse
|
6
|
Zhan T, Ding G, Cao W, Li J, She X, Teng H. Amperometric sensing of catechol by using a nanocomposite prepared from Ag/Ag2O nanoparticles and N,S-doped carbon quantum dots. Mikrochim Acta 2019; 186:743. [PMID: 31686218 DOI: 10.1007/s00604-019-3848-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
This work describes the synthesis of a nanocomposite consisting of Ag2O, silver nanoparticles and N,S-doped carbon quantum dots (Ag2O/Ag@NS-CQD). The NS-CQD were prepared by hydrothermal treatment of p-aminobenzenesulfonic acid. They act as both the reducing and stabilizing agent for synthesis of Ag2O/Ag@NS-CQD. The composite was characterized by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The glassy carbon electrode (GCE) was modified by coating it with Ag2O/Ag@NS-CQD. It exhibits excellent amperometric response to catechol, typically at a low working potential of around 0.25 V. Under the best experimental conditions, the sensor has a wide linear response (0.2 to 180 μM) and a low detection limit (13 nM; at S/N = 3). The method was applied to analysis of spiked water samples and gave satisfactory results. Graphical abstract Schematic representation of the preparation of the Ag/Ag2O@N,S-doped carbon quantum dots composite using p-aminobenzenesulfonic acid and silver nitrate as the starting materials. The corresponding modified glassy carbon electrode exhibits the excellent amperometric sensing performance toward catechol at pH 7.0 with low detection limit and good selectivity.
Collapse
Affiliation(s)
- Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Guiyan Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wei Cao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiamin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xilin She
- College of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center for Marine Biomass Fiber, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hongni Teng
- Department of Applied Chemistry, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| |
Collapse
|
7
|
Tayade S, Patil K, Sharma G, Patil P, Mane RM, Mahulikar P, Sharma KKK. Electrochemical investigations of thymine and thymidine in 1-butyl-3-methyl imidazolium tetrafluoroborate ionic liquids at room temperature. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Robak J, Węgiel K, Burnat B, Skrzypek S. A carbon ceramic electrode modified with bismuth oxide nanoparticles for determination of syringic acid by stripping voltammetry. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2504-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Ghoreishi SM, Behpour M, Hajisadeghian E, Golestaneh M. Voltammetric determination of resorcinol on the surface of a glassy carbon electrode modified with multi-walled carbon nanotube. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
10
|
Shi F, Xi J, Hou F, Han L, Li G, Gong S, Chen C, Sun W. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:450-7. [PMID: 26478332 DOI: 10.1016/j.msec.2015.08.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/15/2015] [Accepted: 08/25/2015] [Indexed: 11/20/2022]
Abstract
In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO-Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO-Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ).
Collapse
Affiliation(s)
- Fan Shi
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Jingwen Xi
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Fei Hou
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Lin Han
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Guangjiu Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shixing Gong
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Chanxing Chen
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China.
| |
Collapse
|
11
|
Ag Doped Titanium Dioxide Nanocomposite-modified Glassy Carbon Electrode as Electrochemical Interface for Catechol Sensing. ELECTROANAL 2015. [DOI: 10.1002/elan.201500238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Shi F, Wang X, Wang W, Sun W. Electrochemical behavior and determination of guanosine-5′-monophosphate on a ionic liquid modified carbon electrode. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815020057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Kamel MM. Electrooxidation of DL-norvaline at Glassy Carbon Electrode: Approaching the Modified Electrode for Voltammetric Studies of Hydroquinone and Catechol. J ELECTROCHEM SCI TE 2014. [DOI: 10.5229/jecst.2014.5.1.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Kamel MM. Electrooxidation of DL-norvaline at Glassy Carbon Electrode: Approaching the Modified Electrode for Voltammetric Studies of Hydroquinone and Catechol. J ELECTROCHEM SCI TE 2014. [DOI: 10.33961/jecst.2014.5.1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Shi F, Zhu H, Li L, Ling L, Sun W. Electrochemical Oxidative Detection of Guanosine-5′-triphosphate Based on a New Ionic Liquid Modified Carbon Paste Electrode. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Arvand M, Motaghed Mazhabi R, Niazi A. Simultaneous determination of guanine, adenine and thymine using a modified carbon paste electrode by TiO2 nanoparticles-magnesium(II) doped natrolite zeolite. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Sun W, Wang X, Wang Y, Ju X, Xu L, Li G, Sun Z. Application of graphene–SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.09.050] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. Anal Chim Acta 2012; 751:59-65. [DOI: 10.1016/j.aca.2012.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/30/2012] [Accepted: 09/04/2012] [Indexed: 11/17/2022]
|
19
|
Akhavan O, Ghaderi E, Rahighi R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS NANO 2012; 6:2904-16. [PMID: 22385391 DOI: 10.1021/nn300261t] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Graphene oxide nanowalls with extremely sharp edges and preferred vertical orientation were deposited on a graphite electrode by using electrophoretic deposition in an Mg(2+)-GO electrolyte. Using differential pulse voltammetry (DPV), reduced graphene nanowalls (RGNWs) were applied for the first time, in developing an ultra-high-resolution electrochemical biosensor for detection of the four bases of DNA (G, A, T, and C) by monitoring the oxidation signals of the individual nucleotide bases. The extremely enhanced electrochemical reactivity of the four free bases of DNA, single-stranded DNA, and double-stranded DNA (dsDNA) at the surface of the RGNW electrode was compared to electrochemical performances of reduced graphene nanosheet (RGNS), graphite, and glassy carbon electrodes. By increasing the number of DPVs up to 100 scans, the RGNW electrode exhibited an excellent stability with only 15% variation in the oxidation signals, while for the RGNS electrode no detectable signals relating to T and C of 0.1 μM dsDNA were observed. The linear dynamic detection range of the RGNW electrode for dsDNA was checked in the wide range of 0.1 fM to 10 mM, while for the RGNS electrode, it was from 2.0 pM to <10 mM. The lower limits of dsDNA detection of the RGNW and RGNS electrodes were estimated as 9.4 zM (∼5 dsDNA/mL) and 5.4 fM, respectively. The RGNWs were efficient in label-free detection of single nucleotide polymorphisms of 20 zM oligonucleotides (∼10 DNA/mL) having a specific sequence. Therefore, the RGNWs can effectively contribute to the development of ultra-high-sensitive electrochemical biosensors with single-DNA resolutions.
Collapse
Affiliation(s)
- Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | | | | |
Collapse
|
20
|
Niu QJ, Liu J, Li GJ, Qin HQ, Gao HW, Sun W. Electrochemical Behaviours and Detection of Adenosine-5¢-triphosphate on an Ionic Liquid Modified Carbon Paste Electrode. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201100135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Simultaneous Determination of Hydroquinone, Catechol and Resorcinol at Graphene Doped Carbon Ionic Liquid Electrode. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2012. [DOI: 10.1155/2012/243031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Yin H, Zhang Q, Zhou Y, Ma Q, liu T, Zhu L, Ai S. Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene–chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2010.12.060] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|