1
|
Chen C, Cheng J, Xiao Y, Kong T, Tang H, Xie Q, Chen C. Carbon nanotube-interconnected ruthenium phthalocyanine nanoparticles used for real-time monitoring of nitric oxide released from vascular endothelial barrier model. Biosens Bioelectron 2024; 250:116048. [PMID: 38266618 DOI: 10.1016/j.bios.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Real-time monitoring of nitric oxide (NO) is of great importance in diagnosing the physiological functions of neurotransmission, cardiovascular, and immune systems. This study reports the carbon nanotube-interconnected ruthenium phthalocyanine nanoparticle nanocomposite and its applicability in construction of an electrochemical platform, which could real-time detect NO released from the vascular endothelial barrier (VEB) model in cell culture medium. The nanocomposite exhibits regular morphology, uniform particle size, and excellent electro-catalytic activity to electrochemical oxidation of NO. Under optimal conditions, the electrochemical device has high sensitivity (0.871 μA μM-1) and can selectively detect NO down to the concentration of 6 × 10-10 M. The human brain microvascular endothelial cells were cultured onto the Transwell support to construct the VEB model. Upon stimulated by L-arginine, NO produced by the VEB diffuses into the bottom chamber of the Transwell, and is real-time monitored by the electrochemical device. Moreover, evaluation of the NO inhibition by drug is realized using the electrochemical device-Transwell platform. This simple and sensitive platform would be of great interesting for evaluating the endothelial function or its pathological states, and screening the related drugs or chemicals.
Collapse
Affiliation(s)
- Chenpu Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Jun Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yawen Xiao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tong Kong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Hao Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Chao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| |
Collapse
|
2
|
Yusoff N, Rameshkumar P, Shahid MM, Huang ST, Huang NM. Amperometric detection of nitric oxide using a glassy carbon electrode modified with gold nanoparticles incorporated into a nanohybrid composed of reduced graphene oxide and Nafion. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2344-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Siada SOR. Green Synthesized Cobalt Nano Particles for using as a Good Candidate for Sensing Organic Compounds. J ELECTROCHEM SCI TE 2015. [DOI: 10.5229/jecst.2015.6.4.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Siada SOR. Green Synthesized Cobalt Nano Particles for using as a Good Candidate for Sensing Organic Compounds. J ELECTROCHEM SCI TE 2015. [DOI: 10.33961/jecst.2015.6.4.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Zheng D, Liu X, Zhu S, Cao H, Chen Y, Hu S. Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1561-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Electrochemical and Monte Carlo studies of self-assembled trans-[Fe(cyclam)(NCS)2]+ complex ion on gold surface as electrochemical sensor for nitric oxide. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.11.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|