1
|
Ahmad S, Hossain MN, Ahmadi S, Kerman K, Kraatz HB. Electrochemical distinction of neuronal and neuroblastoma cells via the phosphorylation of the cellular extracellular membrane. Anal Biochem 2021; 645:114434. [PMID: 34785194 DOI: 10.1016/j.ab.2021.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022]
Abstract
In this contribution we establish a proof of concept method for monitoring, quantifying and differentiating the extracellular phosphorylation of Human SHSY5Y undifferentiated neuronal cells and neuroblastoma cells by three prominent ectokinases PKA, PKC and Src. Herein it is demonstrated that a combination of different experimental techniques, including fluroesence microscopy, quartz crystal microscopy (QCM) and electrochemistry, can be used to detect extracellular phosphorylation levels of neuronal and neuroblastoma cells. Phosphorylation profiles of the three ectokinases, PKA, PKC and Src, were investigated using fluorescence microscopy and the number of phosphorylation sites per kinase was estimated using QCM. Finally, the phosphorylation of the extracellular membrane was determined using electrochemistry. Our results clearly demonstrate that the extracellular phosphorylation of neuronal cells differs significantly in terms of its phosphorylation profile from diseased neuroblastoma cells and the strength of surface electrochemical techniques in the differentiation process. We reveal that using electrochemistry, the percent compositions of neuronal and neuroblastoma cells can also be identified.
Collapse
Affiliation(s)
- S Ahmad
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - M N Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - S Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - K Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - H-B Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada.
| |
Collapse
|
2
|
Keough M, McLeod JF, Salomons T, Hillen P, Pei Y, Gibson G, McEleney K, Oleschuk R, She Z. Realizing new designs of multiplexed electrode chips by 3-D printed masks. RSC Adv 2021; 11:21600-21606. [PMID: 35478805 PMCID: PMC9034153 DOI: 10.1039/d1ra03482k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Creating small and portable analytical methods is a fast-growing field of research. Devices capable of performing bio-analytical detection are especially desirable with the onset of the global pandemic. Lab-on-a-chip (LOC) technologies, including rapid point-of-care (POC) devices such as glucose sensors, are attractive for applications in resource-poor settings. There are many challenges in creating such devices, from sensitive molecular designs to stable conditions for storing the sensor chips. In this study we have explored using three-dimensional (3D) printing to create shadow masks as a low-cost method to produce multiplexed electrodes by physical vapour deposition. Although the dimensional resolution of the electrodes produced by using 3D printed masks is inferior to those made through photolithography-based techniques, their dimensions can be readily tailored ranging from 1 mm to 3 mm. Multiple mask materials were tested, such as polylactic acid and polyethylene terephthalate glycol, with acrylonitrile butadiene styrene shown to be the best. Simple strategies in making chip holders by 3D printing and controlling working electrode surface area with epoxy glue were also investigated. The prepared chips were tested by performing surface chemistry with thiol-containing molecules and monitoring the signals electrochemically. Preparation of multiplexed electrodes by combining physical vapour deposition with 3-D printed masks.![]()
Collapse
Affiliation(s)
- Madeline Keough
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada
| | - Jennifer F McLeod
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada .,Beaty Water Research Centre, Queen's University Kingston ON K7L 3N6 Canada
| | - Timothy Salomons
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada
| | - Phillip Hillen
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada
| | - Yu Pei
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada .,Beaty Water Research Centre, Queen's University Kingston ON K7L 3N6 Canada
| | - Graham Gibson
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada .,NanoFabrication Kingston, Queen's University Kingston ON K7L 0E9 Canada
| | - Kevin McEleney
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada
| | - Richard Oleschuk
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada
| | - Zhe She
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada .,Beaty Water Research Centre, Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
3
|
Ahmad S, Hossain MN, Ahmadi S, Kerman K, Kraatz HB. Electrochemical detection of neuronal extracellular phosphorylation by PKA, PKC and Src. Anal Biochem 2020; 608:113892. [PMID: 32810472 DOI: 10.1016/j.ab.2020.113892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022]
Abstract
The focus of this work described here is to establish a method for monitoring and quantifying the extracellular phosphorylation of Human SHSY5Y undifferentiated neuronal cells by three ectokinases PKA, PKC and Src; these are kinases that are known to be present in the extracellular matrix. Here is demonstrated that a combination of different experimental techniques, including microscopy and electrochemistry, can be used to detect extracellular phosphorylations. Phosphorylation profiles of the three ectokinases, PKA, PKC and Src, were investigated using fluorescence microscopy and the number of phosphorylation sites per kinase was estimated using QCM. Finally, the phosphorylation of the extracellular membrane was determined using electrochemistry. Our results clearly demonstrate the extracellular phosphorylation of neuronal cells and the strength of surface electrochemical techniques in the investigation of cellular phosphorylation.
Collapse
Affiliation(s)
- S Ahmad
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - M N Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - S Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - K Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada
| | - H-B Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada.
| |
Collapse
|
4
|
Electrochemical studies of human nAChR a7 subunit phosphorylation by kinases PKA, PKC and Src. Anal Biochem 2019; 574:46-56. [DOI: 10.1016/j.ab.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
|
5
|
Wang N, She Z, Ingar Z, Martic S, Kraatz HB. A Bioorganometallic Approach to Study Histidine Kinase Autophosphorylations. Chemistry 2017; 23:3152-3158. [PMID: 28081291 DOI: 10.1002/chem.201605253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 12/12/2022]
Abstract
Auto-phosphorylation of bacterial histidine kinases PhoR, PhoQ, and EnvZ has been investigated using adenosine-5'-[γ-ferrocene] triphosphate (Fc-ATP) as a cosubstrate for the first time. The study has been carried out in solution and on surface. Results from biochemical multiplex assay and surface electrochemical/optical methods are consistent, which successfully demonstrates that Fc-ATP is an efficient cosubstrate for histidine kinase auto-phosphorylations. The study also has discovered that the concentration of Fc-ATP influences the autophosphorylation efficiency. This developed methodology will provide a powerful tool in studying such biological processes towards further understanding of the involved mechanism.
Collapse
Affiliation(s)
- Nan Wang
- Beijing Key Laboratory of Photoelectronic/, Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhe She
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Zakiyya Ingar
- Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Sanela Martic
- Department of Chemistry, Oakland University, 2200 North Squirrel Road, Rochester, Michigan, 48309, USA
| | - Heinz-Bernhard Kraatz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
6
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
7
|
Popa OM, Diculescu VC. Direct electrochemical oxidation of Abelson tyrosine-protein kinase 1 and evaluation of its interaction with synthetic substrate, ATP and inhibitors. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Shayeh JS, Norouzi P, Ganjali MR, Wojdyla M, Fic K, Frackowiak E. Continuous fast Fourier transform admittance voltammetry as a new approach for studying the change in morphology of polyaniline for supercapacitors application. RSC Adv 2015. [DOI: 10.1039/c5ra11962f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, continuous fast Fourier transform admittance voltammetry (CFFTAV) was used to study and characterize the surface morphology of polyaniline (PANI) on glassy carbon (GC) electrodes.
Collapse
Affiliation(s)
- J. Shabani Shayeh
- Center of Excellence in Electrochemistry
- University of Tehran
- Tehran
- Iran
| | - P. Norouzi
- Center of Excellence in Electrochemistry
- University of Tehran
- Tehran
- Iran
| | - M. R. Ganjali
- Center of Excellence in Electrochemistry
- University of Tehran
- Tehran
- Iran
| | - M. Wojdyla
- Poznan University of Technology
- Institute of Chemistry and Technical Electrochemistry
- 60965 Poznan
- Poland
| | - K. Fic
- Poznan University of Technology
- Institute of Chemistry and Technical Electrochemistry
- 60965 Poznan
- Poland
| | - E. Frackowiak
- Poznan University of Technology
- Institute of Chemistry and Technical Electrochemistry
- 60965 Poznan
- Poland
| |
Collapse
|
9
|
Martic S, Rains MK, Haftchenary S, Shahani VM, Kraskouskaya D, Ball DP, Gunning PT, Kraatz HB. Electrochemical detection of the Fc-STAT3 phosphorylation and STAT3–Fc-STAT3 dimerization and inhibition. MOLECULAR BIOSYSTEMS 2014; 10:576-80. [DOI: 10.1039/c3mb70493a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Gorges J, Ullrich A, Kazmaier U. Straightforward Approach to Ferrocenyl Amino Acids and Peptides by Allylic Alkylation. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Mielecki M, Wojtasik J, Zborowska M, Kurzątkowska K, Grzelak K, Dehaen W, Radecki J, Radecka H. Oriented immobilization of His-tagged kinase RIO1 protein on redox active N-(IDA-like)-Cu(II) monolayer deposited on gold electrode—The base of electrochemical biosensor. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.02.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Labib M, Berezovski MV. Electrochemical aptasensors for microbial and viral pathogens. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:155-81. [PMID: 23917779 DOI: 10.1007/10_2013_229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aptamers are DNA and RNA oligonucleotides that can bind to a variety of nonnucleic acid targets with high affinity and specificity. Pathogen detection is a promising area in aptamer research. One of its major advantages is the ability of the aptamers to target and specifically differentiate microbial and viral strains without previous knowledge of the membrane-associated antigenic determinants or molecular biomarkers present in that particular microorganism. Electrochemical sensors emerged as a promising field in the area of aptamer research and pathogen detection. An electrochemical sensor is a device that combines a recognition element and an electrochemical transduction unit, where aptamers represent the latest addition to the large catalog of recognition elements. This chapter summarizes and evaluates recent developments of electrochemical aptamer-based sensors for microbial and viral pathogen detection, viability assessment of microorganisms, bacterial typing, identification of epitope-specific aptamers, affinity measurement between aptamers and their respective targets, and estimation of the degree of aptamer protection of oncolytic viruses for therapeutic purposes.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
13
|
Martić S, Kraatz HB. Chemical biology toolkit for exploring protein kinase catalyzed phosphorylation reactions. Chem Sci 2013. [DOI: 10.1039/c2sc20846f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Labib M, Zamay AS, Muharemagic D, Chechik AV, Bell JC, Berezovski MV. Electrochemical differentiation of epitope-specific aptamers. Anal Chem 2012; 84:2548-56. [PMID: 22324738 DOI: 10.1021/ac300047c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA aptamers are promising immunoshielding agents that could protect oncolytic viruses (OVs) from neutralizing antibodies (nAbs) and increase the efficiency of cancer treatment. In the present Article, we introduce a novel technology for electrochemical differentiation of epitope-specific aptamers (eDEA) without selecting aptamers against individual antigenic determinants. For this purpose, we selected DNA aptamers that can bind noncovalently to an intact oncolytic virus, vaccinia virus (VACV), which can selectively replicate in and kill only tumor cells. The aptamers were integrated as a recognition element into a multifunctional electrochemical aptasensor. The developed aptasensor was used for the linear quantification of the virus in the range of 500-3000 virus particles with a detection limit of 330 virions. Also, the aptasensor was employed to compare the binding affinities of aptamers to VACV and to estimate the degree of protection of VACV using the anti-L1R neutralizing antibody in a displacement assay fashion. Three anti-VACV aptamer clones, vac2, vac4, and vac6, showed the best immunoprotection results and can be applied for enhanced delivery of VACV. Another two sequences, vac5 and vac46, exhibited high affinities to VACV without shielding it from nAb and can be further utilized in sandwich bioassays.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | | | | | | | | | | |
Collapse
|