Sun C, Deng N, An H, Cui H, Zhai J. Electrocatalytic reduction of bromate based on Pd nanoparticles uniformly anchored on polyaniline/SBA-15.
CHEMOSPHERE 2015;
141:243-249. [PMID:
26277081 DOI:
10.1016/j.chemosphere.2015.08.004]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
A nano-composite electrocatalyst of Pd nanoparticles (Pd-NPs) anchored on polyaniline (PANI) supported by mesoporous SBA-15 (Pd-NPs/PANI/SBA-15), was synthesized using an in situ chemical method. Transmission electron microscopy showed that the Pd-NPs were homogeneously dispersed. Fourier-transform infrared and X-ray photoelectron spectroscopies confirmed that the Pd-NPs in the metallic state (Pd(0)) were predominantly immobilized on nitrogen sites in the PANI chains. The electrochemical performance of Pd-NPs/PANI/SBA-15 for electrocatalytic reduction of bromate (BrO3(-)) in an acidic medium was investigated by cyclic voltammetry (CV) and amperometric measurement. The reduction peak in the CV curves in the region 0.12 to -0.22V (vs. SCE) corresponded to response of BrO3(-) electroreduction, and the reduction peak current was well fitted linearly to the BrO3(-) concentration. It is proposed that the bromate ions diffuse to the Pd-NPs active sites and then the electrocatalytic reduction occurred with the H(+) doped in PANI. Furthermore, by amperometric measurement, Pd-NPs/PANI/SBA-15 showed relatively high sensitivity with respect to BrO3(-) concentration in the range of 8μmolL(-1) to 40mmolL(-1). Continuous CV for 200 cycles proved that Pd-NPs/PANI/SBA-15 had excellent electrocatalytic stability. These results show that Pd-NPs/PANI/SBA-15 is effective for electrocatalytic reduction of BrO3(-) and has great potential for the fabrication of BrO3(-) electrochemical sensor.
Collapse