1
|
Thakur A, Kumar A. Exploring the potential of ionic liquid-based electrochemical biosensors for real-time biomolecule monitoring in pharmaceutical applications: From lab to life. RESULTS IN ENGINEERING 2023; 20:101533. [DOI: 10.1016/j.rineng.2023.101533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Bravo I, Prata M, Torrinha Á, Delerue-Matos C, Lorenzo E, Morais S. Laccase bioconjugate and multi-walled carbon nanotubes-based biosensor for bisphenol A analysis. Bioelectrochemistry 2022; 144:108033. [PMID: 34922175 DOI: 10.1016/j.bioelechem.2021.108033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor compound that has been detected in aquatic ecosystems. In this work, the development of an electrochemical biosensor for BPA determination based on laccase from Trametes versicolor is reported. A bioconjugate was optimized to maximize the biosensor electrocatalytic activity and stability, which for the first time involved the synergistic effect of this specific enzyme (6.8 UmL-1), chitosan (5 mgmL-1) and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate in an optimum 5:5:2 (v/v/v) proportion. This bioconjugate was deposited onto a screen-printed carbon electrode previously modified with multi-walled carbon nanotubes (MWCNTs). Nanostructuration with MWCNTs enlarged the electrocatalytic activity and surface area, thus improving the biosensor performance. The BPA electrochemical reaction follows an EC mechanism at the optimum pH value of 5.0. Linearity up to 12 µM, a sensitivity of (6.59 ± 0.04) × 10-2 μAμM-1 and a detection limit of 8.4 ± 0.3 nM were obtained coupled with high reproducibility (relative standard deviations lower than 6%) and stability (87% of the initial response after one month). The developed biosensor was employed to the analysis of BPA in river water displaying appropriate accuracy (94.6-97.9%) and repeatability (3.1 to 6% relative standard deviations) proving its high potential applicability for in situ environmental analysis.
Collapse
Affiliation(s)
- Iria Bravo
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Faraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Mariana Prata
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Álvaro Torrinha
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Faraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
3
|
Ghorbanizamani F, Timur S. Ionic Liquids from Biocompatibility and Electrochemical Aspects toward Applying in Biosensing Devices. Anal Chem 2017; 90:640-648. [DOI: 10.1021/acs.analchem.7b03596] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Faezeh Ghorbanizamani
- Ege University, Faculty of Science, Biochemistry Department, Bornova, Izmir, Turkey, 35100
| | - Suna Timur
- Ege University, Faculty of Science, Biochemistry Department, Bornova, Izmir, Turkey, 35100
- Ege University, Central Research Testing and Analysis Laboratory Research and Application Center, Bornova, Izmir, Turkey, 35100
| |
Collapse
|
4
|
Wu F, Huang T, Hu Y, Yang X, Xie Q. One-pot electrodeposition of a composite film of glucose oxidase, imidazolium alkoxysilane and chitosan on a reduced graphene oxide–Pt nanoparticle/Au electrode for biosensing. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Yao Y, Wu SG, Xu HH, Wang LW. High-Sensitive Glucose Biosensor Based on Ionic Liquid Doped Polyaniline/Prussian Blue Composite Film. CHINESE J CHEM PHYS 2015. [DOI: 10.1063/1674-0068/28/cjcp1504058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
6
|
Vilian ATE, Mani V, Chen SM, Dinesh B, Huang ST. The Immobilization of Glucose Oxidase at Manganese Dioxide Particles-Decorated Reduced Graphene Oxide Sheets for the Fabrication of a Glucose Biosensor. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502430d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A. T. Ezhil Vilian
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, R.O.C
| | - Veerappan Mani
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, R.O.C
| | - Shen-Ming Chen
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, R.O.C
| | - Bose Dinesh
- Department
of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Sheng-Tung Huang
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, R.O.C
| |
Collapse
|
7
|
Egorova KS, Ananikov VP. Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. CHEMSUSCHEM 2014; 7:336-60. [PMID: 24399804 DOI: 10.1002/cssc.201300459] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/22/2013] [Indexed: 05/19/2023]
Abstract
Rapid progress in the field of ionic liquids in recent decades led to the development of many outstanding energy-conversion processes, catalytic systems, synthetic procedures, and important practical applications. Task-specific optimization emerged as a sharpening stone for the fine-tuning of structure of ionic liquids, which resulted in unprecedented efficiency at the molecular level. Ionic-liquid systems showed promising opportunities in the development of green and sustainable technologies; however, the chemical nature of ionic liquids is not intrinsically green. Many ionic liquids were found to be toxic or even highly toxic towards cells and living organisms. In this Review, we show that biological activity and cytotoxicity of ionic liquids dramatically depend on the nature of a biological system. An ionic liquid may be not toxic for particular cells or organisms, but may demonstrate high toxicity towards another target present in the environment. Thus, a careful selection of biological activity data is a must for the correct assessment of chemical technologies involving ionic liquids. In addition to the direct biological activity (immediate response), several indirect effects and aftereffects are of primary importance. The following principal factors were revealed to modulate toxicity of ionic liquids: i) length of an alkyl chain in the cation; ii) degree of functionalization in the side chain of the cation; iii) anion nature; iv) cation nature; and v) mutual influence of anion and cation.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991 (Russia)
| | | |
Collapse
|
8
|
Vilian ATE, Chen SM. Direct electrochemistry and electrocatalysis of glucose oxidase based poly(l-arginine)-multi-walled carbon nanotubes. RSC Adv 2014. [DOI: 10.1039/c4ra06013j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic diagram of the preparation of GOx/P-l-Arg/f-MWCNTs/GCE modified electrodes for glucose biosensors.
Collapse
Affiliation(s)
- A. T. Ezhil Vilian
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106, Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106, Republic of China
| |
Collapse
|
9
|
Wang W, Xie Y, Wang Y, Du H, Xia C, Tian F. Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1121-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|