1
|
Wen D, Gao C, Zhang Y, Xing E, Yao J, Fu R. Simultaneous removal of PAHs and heavy metals from soil by combining electrokinetic-assisted delivery of persulfate and ultrasound activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136315. [PMID: 39486331 DOI: 10.1016/j.jhazmat.2024.136315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/21/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Herein, we proposed and demonstrated a novel approach of combining electrokinetics (EK)-assisted delivery of persulfate (PS) and ultrasound-induced thermal activation of PS and release of heavy metals, to synchronously remove organic pollutants and heavy metals from soil. Results showed that in tested soil, the mass transfer efficiency of PS induced by electromigration was approximately 3.36 times that by electroosmotic flow and 1416 times that by diffusion. Compared to the PS injection alone, EK-assisted delivery of PS significantly increased the degradation rate of phenanthrene, improving from 21.60 % to 76.23 %. Due to the applied ultrasound, the temperature of soil was observed to reach target temperatures∼50℃ for effective PS activation, and hydroxyl radicals and alkyl-like radicals were detected in the soil. Moreover, the decomposition of PS on the cathode electrode inhibited the electrolytic water reaction, avoiding the focusing effect and potential flattening. Concurrently, ultrasound thermally activated PS promoted the release of heavy metals from soil. As a result, the removal rates of Pb, Zn and Cd near the anode region increased from 0.00 %, 5.49 % and 11.72 % to 11.89 %, 82.64 % and 86.30 %, respectvcely. These results indicated the novel approach holds the potential for simultaneous removal of organic pollutants and heavy metals.
Collapse
Affiliation(s)
- Dongdong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Caihong Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yajun Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Enlu Xing
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiabin Yao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rongbing Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Zheng D, Xie Q, Li F, Huang W, Qi Z, Dong J, Li G, Zhang F. Spatiotemporal dynamic temperature variation dominated by ion behaviors during groundwater remediation using direct current. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124091. [PMID: 38697248 DOI: 10.1016/j.envpol.2024.124091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Direct current (DC) electric field has shown promising performance in contaminated site remediation, in which the Joule heating effect plays an important role but has been previously underappreciated. This study focuses on the spatiotemporal characteristics and mechanism of temperature change in heterogeneous porous media with applied DC. The heating process can be divided into four phases: preferential heating of the low permeability zone (LPZ), rapid heating in the middle region, temperature drop and hot zone shift, and reheating. The dynamic ion behaviors with complex interplays among reactions, electrokinetic-driven migration, and mixed convection induced an uneven redistribution of ions and dominated the heating rate and temperature distribution. The concentration of major ions near the pH jump decreased to 1% of the initial value, even though ions were continuously pumped into the heating zone. This ion depletion caused a drop in current, heating rate, and temperature. Here ions cannot be delivered rapidly into the ion-depleted zone by electromigration due to the potential flattening in the surrounding region. The presence of LPZ intensified the nonuniformity of ion redistribution, where a regional focusing of water-soluble ions was observed, and weakened the temperature rebound compared with that using homogeneous sand. These results provide a new perspective on the regulation of DC heating in site remediation.
Collapse
Affiliation(s)
- Di Zheng
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China.
| | - Qianli Xie
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Fangzhou Li
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Wan Huang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Zhen Qi
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Jingqi Dong
- Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing, 100041, PR China
| | - Guanghe Li
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing, 100015, PR China
| | - Fang Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing, 100015, PR China.
| |
Collapse
|
3
|
Hussain AA, Kamran K, Imran M, Akram A, Li L, Hina M, Naz MY, Mahr MS, Mahmood A, Mohammed AAA. Effect of experimental boundary conditions and treatment-time on the electro-desalination of soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:63. [PMID: 38302793 DOI: 10.1007/s10653-023-01830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/05/2023] [Indexed: 02/03/2024]
Abstract
This study investigates the effect of boundary conditions and treatment-time on the electro-desalination of artificially-contaminated soil. The effect of ion exchange membranes (IEM), calcium chloride (CaCl2), and ethylenediaminetetraacetic acid (EDTA) on the removal of salt (i.e., Na+, Cl-, and Ca2+) and metal (i.e., Co2+ and Fe2+) ions from the soil by electrokinetic (EK) was studied. The outcomes demonstrate that an increase in treatment-time decreases the electroosmosis and ion removal rate, which might be attributed to the formation of acid-base fronts in soil, except in the IEM case. Because a high pH jump and electroosmotic flow (EOF) of water were not observed within the soil specimen due to the IEM, the removal of ions was only by diffusion and electromigration. The collision of acid-base fronts produced a large voltage gradient in a narrow soil region with a reduced electric field (EF) in its remaining parts, causing a decrease in EOF and ion transport by electromigration. The results showed that higher electroosmosis was observed by using CaCl2 and EDTA; thus, the removal rate of Co2+, Na+, and Ca2+ was greater than Cl- due to higher EOF. However, for relatively low EOF, the removal of Cl- exceeded that of Co2+, Na+, and Ca2+, possibly due to a lack of EOF. In addition, the adsorption of Fe2+ in soil increased with treatment-time due to the corrosion of the anode during all EK experiments except in the case of IEM, where an anion exchange membrane (AEM) was introduced at the anode-soil interface.
Collapse
Affiliation(s)
- Abdul Ahad Hussain
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China.
| | - Kashif Kamran
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Muhammad Imran
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Aasma Akram
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Lin Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China.
| | - Maryam Hina
- Institute of Physics, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Shabir Mahr
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Abdallah A A Mohammed
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Optimization of electroosmotic flow to enhance the removal of contaminants from low‑permeable soils. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Zheng Y, Yu Q, Yu L, Zhang P, Zeng L, Lin X, Han R, Li D. Enhanced remediation of surface-bound hexavalent chromium in soils using the acidic and alkaline fronts of electrokinetic technology. CHEMOSPHERE 2022; 307:135905. [PMID: 35931266 DOI: 10.1016/j.chemosphere.2022.135905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In the subsurface environment, highly toxic hexavalent chromium (Cr(VI)) control and remediation are essential to avoid further ecological impacts and reduce environmental risks. This paper investigated the enhanced Cr(VI) electrokinetic removal in the soil through the approaching cathode method. Besides, a novel four-step sequential fractionation method was used to reflect the strength of Cr(VI) binding to the soil. The approaching cathode enhanced the electrokinetic delivery of surface-bound Cr(VI) by advancing the alkaline front for Cr(VI) desorption and improving the electric potential flattening of the soil layers. Desorption of Cr(VI) by the alkaline front involved converting the inner-sphere complexes form of Cr(VI) to a weakly adsorbed form susceptible to ionic strength. In addition, the acidic front provided a favorable environment for the photochemical reduction of Cr(VI) by soil species or the added citrate as the electron donors. Improving the potential distribution could regulate the energy consumption of individual soil layers and efficiently operate the electrokinetic transfer of pollutants. The work results have significant scientific and practical significance for applying the in-situ electrokinetic technique in subsurface pollution control.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiu Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Lin Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Pengpeng Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Linghao Zeng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiaosha Lin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Renhui Han
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
6
|
Zhang M, Wu B, Guo P, Wang S, Guo S. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil under the superimposed electric field condition. CHEMOSPHERE 2021; 273:128723. [PMID: 33127102 DOI: 10.1016/j.chemosphere.2020.128723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/10/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
An innovative superimposed electric field (SEF) was designed with the aim to achieve uniform removal of polycyclic aromatic hydrocarbons (PAHs) in soil. Also the influence of SEF on the bioremediation efficiency of PAHs was investigated in compared with the common electric field (CEF). Five experiments were conducted in this study, namely EK-CEF (applied CEF), EKB-CEF (CEF enhanced bioremediation), EK-SEF (applied SEF), EKB-SEF (SEF enhanced bioremediation), and Bio (bioremediation). The results indicated that electric field with periodically reversed polarity could effectively prevent the occurrence of large changes in soil pH, temperature, and electric current. The electric field intensity of SEF was concentrated in the range of 0.5-1.5 V/cm, and the difference between the maximum and minimum PAHs removal percentage in EK-SEF was just 5.4%, in comparison to 14.8% in EK-CEF. The bioremediation promoting effect did not show significant difference between SEF and CEF. Compared to Bio, the removal percentages of the 5-ring and 6-ring PAHs attributed to the degrading bacteria were much higher in EKB-SEF and EKB-CEF. Moreover, the microbial number increased with the distance away from electrodes, and the microbial community changed correspondingly. All these would be resulted in differences removal efficiencies among different PAHs components. Despite its intrinsic advantages, the influence of SEF on soil physicochemical and biological properties needs further study.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | | | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| |
Collapse
|
7
|
|
8
|
|
9
|
Femmer R, Mani A, Wessling M. Ion transport through electrolyte/polyelectrolyte multi-layers. Sci Rep 2015; 5:11583. [PMID: 26111456 PMCID: PMC4481379 DOI: 10.1038/srep11583] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/29/2015] [Indexed: 12/01/2022] Open
Abstract
Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes.
Collapse
Affiliation(s)
- Robert Femmer
- AVT Chemical Process Engineering, RWTH Aachen University, Turmstr. 46, 52064 Aachen, Germany
| | - Ali Mani
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Matthias Wessling
- 1] AVT Chemical Process Engineering, RWTH Aachen University, Turmstr. 46, 52064 Aachen, Germany [2] DWI, Forckenbeckstr. 50, 52074 Aachen, Germany
| |
Collapse
|
10
|
Drozdov AD, deClaville Christiansen J. Modeling the effects of pH and ionic strength on swelling of polyelectrolyte gels. J Chem Phys 2015; 142:114904. [DOI: 10.1063/1.4914924] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. D. Drozdov
- Center for Plastics Technology, Danish Technological Institute, Gregersensvej 7, Taastrup 2630, Denmark
- Department of Mechanical and Manufacturing Engineering, Aalborg University, Fibigerstraede 16, Aalborg 9220, Denmark
| | - J. deClaville Christiansen
- Department of Mechanical and Manufacturing Engineering, Aalborg University, Fibigerstraede 16, Aalborg 9220, Denmark
| |
Collapse
|
11
|
Drozdov AD, deClaville Christiansen J. Swelling of pH-sensitive hydrogels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022305. [PMID: 25768503 DOI: 10.1103/physreve.91.022305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Indexed: 06/04/2023]
Abstract
A model is derived for the elastic response of polyelectrolyte gels subjected to unconstrained and constrained swelling. A gel is treated as a three-phase medium consisting of a solid phase (polymer network), solvent (water), and solutes (mobile ions). Transport of solvent and solutes is modeled as their diffusion through the network accelerated by an electric field formed by ions and accompanied by chemical reactions (dissociation of functional groups attached to the chains). Constitutive equations (including the van't Hoff law for ionic pressure and the Henderson-Hasselbach equation for ionization of chains) are derived by means of the free energy imbalance inequality. Good agreement is demonstrated between equilibrium swelling diagrams on several pH-sensitive gels and results of simulation. It is revealed that swelling of polyelectrolyte gels is driven by electrostatic repulsion of bound charges, whereas the effect of ionic pressure is of secondary importance.
Collapse
Affiliation(s)
- A D Drozdov
- Center for Plastics Technology, Danish Technological Institute, Gregersensvej 7, DK-2630 Taastrup, Denmark
- Department of Mechanical and Manufacturing Engineering, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg, Denmark
| | - J deClaville Christiansen
- Department of Mechanical and Manufacturing Engineering, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg, Denmark
| |
Collapse
|
12
|
van Soestbergen M, Erich S, Huinink H, Adan O. Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Dydek EV, Bazant MZ. Nonlinear dynamics of ion concentration polarization in porous media: The leaky membrane model. AIChE J 2013. [DOI: 10.1002/aic.14200] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- E. Victoria Dydek
- Dept. of Chemical Engineering; Massachusetts Institute of Technology; Cambridge; MA; 02139
| | | |
Collapse
|
14
|
Kamran K, van Soestbergen M, Pel L. Electrokinetic Salt Removal from Porous Building Materials Using Ion Exchange Membranes. Transp Porous Media 2012. [DOI: 10.1007/s11242-012-0083-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|