1
|
Wuamprakhon P, Ferrari AGM, Crapnell RD, Pimlott JL, Rowley-Neale SJ, Davies TJ, Sawangphruk M, Banks CE. Exploring the Role of the Connection Length of Screen-Printed Electrodes towards the Hydrogen and Oxygen Evolution Reactions. SENSORS (BASEL, SWITZERLAND) 2023; 23:1360. [PMID: 36772400 PMCID: PMC9920153 DOI: 10.3390/s23031360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Zero-emission hydrogen and oxygen production are critical for the UK to reach net-zero greenhouse gasses by 2050. Electrochemical techniques such as water splitting (electrolysis) coupled with renewables energy can provide a unique approach to achieving zero emissions. Many studies exploring electrocatalysts need to "electrically wire" to their material to measure their performance, which usually involves immobilization upon a solid electrode. We demonstrate that significant differences in the calculated onset potential for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) can be observed when using screen-printed electrodes (SPEs) of differing connection lengths which are immobilized with a range of electrocatalysts. This can lead to false improvements in the reported performance of different electrocatalysts and poor comparisons between the literature. Through the use of electrochemical impedance spectroscopy, uncompensated ohmic resistance can be overcome providing more accurate Tafel analysis.
Collapse
Affiliation(s)
- Phatsawit Wuamprakhon
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, Vidyasirimedhi Institute of Science and Technology, School of Energy Science and Engineering, Rayong 21210, Thailand
| | | | - Robert D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Jessica L. Pimlott
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Samuel J. Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Trevor J. Davies
- INEOS Electrochemical Solutions, Bankes Lane Office, Bankes Lane, Runcorn, Cheshire WA7 4JE, UK
| | - Montree Sawangphruk
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, Vidyasirimedhi Institute of Science and Technology, School of Energy Science and Engineering, Rayong 21210, Thailand
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
2
|
Mullen J, Li H, Atkin R, Silvester DS. Mixing Ionic Liquids Affects the Kinetics and Thermodynamics of the Oxygen/Superoxide Redox Couple in the Context of Oxygen Sensing. ACS PHYSICAL CHEMISTRY AU 2022; 2:515-526. [PMID: 36855608 PMCID: PMC9955187 DOI: 10.1021/acsphyschemau.2c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
The electrochemical oxygen reduction reaction is vital for applications such as fuel cells, metal air batteries and for oxygen gas sensing. Oxygen undergoes a 1-electron reduction process in dry ionic liquids (ILs) to form the electrogenerated superoxide ion that is solvated and stabilized by IL cations. In this work, the oxygen/superoxide (O2/O2 •-) redox couple has been used to understand the effect of mixing ILs with different cations in the context of developing designer electrolytes for oxygen sensing, by employing cyclic voltammetry at both gold and platinum electrodes. Different cations with a range of sizes, geometries and aromatic/aliphatic character were studied with a common bis(trifluoromethylsulfonyl)imide ([NTf2]-) anion. Diethylmethylsulfonium ([S2,2,1]+), N-butyl-N-methylpyrrolidinum ([C4mpyrr]+) and tetradecyltrihexylphosphonium ([P14,6,6,6]+) cations were mixed with a common 1-butyl-3-methylimidazolium ([C4mim]+) cation at mole fractions (x) of [C4mim]+ of 0, 0.2, 0.4, 0.6, 0.8, and 1. Both the redox kinetics and thermodynamics were found to be highly dependent on the cation structure and the electrode material used. Large deviations from "ideal" mixtures were observed for mixtures of [C4mim][NTf2] with [C4mpyrr][NTf2] on gold electrodes, suggesting a much higher amount of [C4mim]+ ions near the electrode surface despite the large excess of [C4mpyrr]+ in the bulk. The electrical double layer structure was probed for a mixture of [C4mim]0.2[C4mpyrr]0.8[NTf2] using atomic force microscopy measurements on Au, revealing that the first layer was more like [C4mim][NTf2] than [C4mpyrr][NTf2]. Unusually fast kinetics for O2/O2 •- in mixtures of [C4mim]+ with [P14,6,6,6]+ were also observed in the electrochemistry results, which warrants further follow-up studies to elucidate this promising behavior. Overall, it is important to understand the effect on the kinetic and thermodynamic properties of electrochemical reactions when mixing solvents, to aid in the creation of designer electrolytes with favorable properties for their intended application.
Collapse
Affiliation(s)
- Jesse
W. Mullen
- School
of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western
Australia 6845, Australia
| | - Hua Li
- School
of Molecular Sciences, The University of
Western Australia, Perth, Western Australia 6009, Australia,Centre
for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Rob Atkin
- School
of Molecular Sciences, The University of
Western Australia, Perth, Western Australia 6009, Australia
| | - Debbie S. Silvester
- School
of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western
Australia 6845, Australia,. Tel.: +61-08-9266-7148. Fax: +61-08-9266-2300
| |
Collapse
|
3
|
Zhang Y, Marlow JB, Millar W, Aman ZM, Silvester DS, Warr GG, Atkin R, Li H. Nanostructure, electrochemistry and potential-dependent lubricity of the catanionic surface-active ionic liquid [P 6,6,6,14] [AOT]. J Colloid Interface Sci 2022; 608:2120-2130. [PMID: 34752982 DOI: 10.1016/j.jcis.2021.10.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS A catanionic surface-active ionic liquid (SAIL) trihexyltetradecylphosphonium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate ([P6,6,6,14] [AOT]) is nanostructured in the bulk and at the interface. The interfacial nanostructure and lubricity may be changed by applying a potential. EXPERIMENTS The bulk structure and viscosity have been investigated using small angle X-ray scattering (SAXS) and rheometry. The interfacial structure and lubricity as a function of potential have been investigated using atomic force microscopy (AFM). The electrochemistry has been investigated using cyclic voltammetry. FINDINGS [P6,6,6,14] [AOT] shows sponge-like bulk nanostructure with distinct interdigitation of cation-anion alkyl chains. Shear-thinning occurs at 293 K and below, but becomes less obvious on heating up to 313 K. Voltammetric analysis reveals that the electrochemical window of [P6,6,6,14] [AOT] on a gold micro disk electrode exceeds the potential range of the AFM experiments and that negligible redox activity occurs in this range. The interfacial layered structure of [P6,6,6,14] [AOT] is weaker than conventional ILs and SAILs, whereas lubricity is better, confirming the inverse correlation between the near-surface structure and lubricity. The adhesive forces of [P6,6,6,14] [AOT] are lower at -1.0 V than at open circuit potential and +1.0 V, likely due to reduced electrostatic interactions caused by shielding of charge centres via long alkyl chains.
Collapse
Affiliation(s)
- Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Joshua B Marlow
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wade Millar
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Zachary M Aman
- Fluid Science and Resources Division, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
4
|
Doblinger S, Hay CE, Tomé LC, Mecerreyes D, Silvester DS. Ionic liquid/poly(ionic liquid) membranes as non-flowing, conductive materials for electrochemical gas sensing. Anal Chim Acta 2022; 1195:339414. [DOI: 10.1016/j.aca.2021.339414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022]
|
5
|
Whittingham MJ, Hurst NJ, Crapnell RD, Garcia-Miranda Ferrari A, Blanco E, Davies TJ, Banks CE. Electrochemical Improvements Can Be Realized via Shortening the Length of Screen-Printed Electrochemical Platforms. Anal Chem 2021; 93:16481-16488. [PMID: 34854668 DOI: 10.1021/acs.analchem.1c03601] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Screen-printed electrodes (SPEs) are ubiquitous within the field of electrochemistry and are commonplace within the arsenal of electrochemists. Their popularity stems from their reproducibility, versatility, and extremely low-cost production, allowing their utilization as single-shot electrodes and thus removing the need for tedious electrode pretreatments. Many SPE studies have explored changing the working electrode composition and/or size to benefit the researcher's specific applications. In this paper, we explore a critical parameter of SPEs that is often overlooked; namely, we explore changing the length of the SPE connections. We provide evidence of resistance changes through altering the connection length to the working electrode through theoretical calculations, multimeter measurements, and electrochemical impedance spectroscopy (EIS). We demonstrate that changing the physical length of SPE connections gives rise to more accurate heterogeneous electrode kinetics, which cannot be overcome simply through IR compensation. Significant improvements are observed when utilized as the basis of electrochemical sensing platforms for sodium nitrite, β-nicotinamide adenine dinucleotide (NADH), and lead (II). This work has a significant impact upon the field of SPEs and highlights the need for researchers to characterize and define their specific electrode performance. Without such fundamental characterization as the length and resistance of the SPE used, direct comparisons between two different systems for similar applications are obsolete. We therefore suggest that, when using SPEs in the future, experimentalists report the length of the working electrode connection alongside the measured resistance (multimeter or EIS) to facilitate this standardization across the field.
Collapse
Affiliation(s)
- Matthew J Whittingham
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K
| | - Nicholas J Hurst
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K
| | - Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K
| | | | - Elias Blanco
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.,Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Trevor J Davies
- Electrochemical Technology Technical Centre, INOVYN, South Parade, Runcorn, Cheshire WA7 4JE, U.K
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K
| |
Collapse
|
6
|
Hay CE, Lee J, Silvester DS. A methodology to detect explosive residues using a gelled ionic liquid based field-deployable electrochemical device. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Khazalpour S, Yarie M, Kianpour E, Amani A, Asadabadi S, Seyf JY, Rezaeivala M, Azizian S, Zolfigol MA. Applications of phosphonium-based ionic liquids in chemical processes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01901-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Toniolo R, Dossi N, Giannilivigni E, Fattori A, Svigelj R, Bontempelli G, Giacomino A, Daniele S. Modified Screen Printed Electrode Suitable for Electrochemical Measurements in Gas Phase. Anal Chem 2020; 92:3689-3696. [PMID: 32008321 DOI: 10.1021/acs.analchem.9b04818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a convenient assembly for screen printed carbon electrodes (SPCE) suitable for analyses in gaseous samples which are of course lacking in supporting electrolytes. It consists of a circular crown of filter paper, soaked in a RTIL or a DES, placed upon a disposable screen printed carbon cell, so as to contact the outer edge of the carbon disk working electrode, as well as peripheral counter and reference electrodes. The electrical contact between the paper crown soaked in RTIL or DES and SPCE electrodes is assured by a gasket, and all components are installed in a polylactic acid holder. As a result of this configuration, a sensitive, fast-responding, membrane-free gas sensor is achieved where the real working electrode surface is the boundary zone of the carbon working disk contacted by the paper crown soaked in the polyelectrolyte. This assembly provides a portable and disposable electrochemical platform, assembled by the easy immobilization onto a porous and inexpensive supporting material such as paper of RTILs or DESs which are characterized by profitable electrical conductivity and negligible vapor pressure. The electroanalytical performance of this device was evaluated by voltammetric and flow injection analyses of oxygen which was chosen as prototype of electroactive gaseous analytes. The results obtained pointed out that this assembly is very profitable for the analysis of gaseous atmospheres, especially when used as detector for FIA in gaseous streams.
Collapse
Affiliation(s)
- Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Emanuele Giannilivigni
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Andrea Fattori
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Gino Bontempelli
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Agnese Giacomino
- Department of Drug Science and Technology, University of Torino, via Giuria 9, I-10125 Torino, Italy
| | - Salvatore Daniele
- Department of Molecular Science and Nanosystems, University of Ca' Foscari Venezia, via Torino 155, I-30137 Venezia-Mestre, Italy
| |
Collapse
|
9
|
Lee J, Hussain G, López-Salas N, MacFarlane DR, Silvester DS. Thin films of poly(vinylidene fluoride-co-hexafluoropropylene)-ionic liquid mixtures as amperometric gas sensing materials for oxygen and ammonia. Analyst 2020; 145:1915-1924. [DOI: 10.1039/c9an02153a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A gas sensor comprising of a planar electrode device covered with a thin layer of gel polymer electrolyte gave accurate and fast sensing responses for oxygen and ammonia detection in both the cathodic and anodic potential regions.
Collapse
Affiliation(s)
- Junqiao Lee
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Perth
- Australia
| | - Ghulam Hussain
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Perth
- Australia
| | | | | | - Debbie S. Silvester
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Perth
- Australia
| |
Collapse
|
10
|
Hussain G, Ge M, Zhao C, Silvester DS. Fast responding hydrogen gas sensors using platinum nanoparticle modified microchannels and ionic liquids. Anal Chim Acta 2019; 1072:35-45. [PMID: 31146863 DOI: 10.1016/j.aca.2019.04.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 11/30/2022]
Abstract
From a safety perspective, it is vital to have fast responding gas sensors for toxic and explosive gases in the event of a gas leak. Amperometric gas sensors have been developed for such a purpose, but their response times are often relatively slow - on the order of 50 seconds or more. In this work, we have developed sensors for hydrogen gas that demonstrate ultra-fast response times. The sensor consists of an array of gold microchannel electrodes, electrodeposited with platinum nanoparticles (PtNPs) to enable hydrogen electroactivity. Very thin layers (∼9 μm) of room temperature ionic liquids (RTILs) result in an extremely fast response time of only 2 s, significantly faster than the other conventional electrodes examined (unmodified Pt electrode, and PtNP modified Au electrode). The RTIL layer in the microchannels is much thinner than the channel length, showing an interesting yet complex diffusion pattern and characteristic thin-layer behavior. At short times (e.g. on the timescale of cyclic voltammetry), the oxidation current is smaller and steady-state in nature, compared to macrodisk electrodes. At longer times (e.g. using long-term chronoamperometry), the diffusion layer is large for all surfaces and extends to the liquid/gas phase boundary, where the gas is continuously replenished from the flowing gas stream. Thus, the current response is the largest on the microchannel electrode, resulting in the highest sensitivity and lowest limit of detection for hydrogen. These microchannel electrodes appear to be highly promising surfaces for the ultrafast detection of hydrogen gas, particularly at relevant concentrations close to, or below, the lower explosive limit of 4 vol-% H2.
Collapse
Affiliation(s)
- Ghulam Hussain
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia
| | - Mengchen Ge
- School of Chemistry, Faculty of Science, The University of New South Wales, Sydney, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, Faculty of Science, The University of New South Wales, Sydney, 2052, Australia.
| | - Debbie S Silvester
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia.
| |
Collapse
|
11
|
Hussain G, Aldous L, Silvester DS. Preparation of platinum-based 'cauliflower microarrays' for enhanced ammonia gas sensing. Anal Chim Acta 2018; 1048:12-21. [PMID: 30598141 DOI: 10.1016/j.aca.2018.09.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/08/2018] [Accepted: 09/21/2018] [Indexed: 12/01/2022]
Abstract
In amperometric gas sensors, the flux of gas to electrode surfaces determines the analytical response and detection limit. For trace concentration detection, the resulting low current prevents the miniaturisation of such sensors. Therefore, in this study, we have developed repeating arrays of nanostructures which maximise flux towards their surface. Unique platinum 3D cauliflower-shaped deposits with individual floret-shaped segments have been produced in a single step electrodeposition process. The confined walls of recessed microelectrode arrays (10 μm in diameter, 90 electrodes) are utilized to produce these structures with a high surface area. Distinct segments are observed, with the gaps corresponding to electrodes adjacent in the microarray; thus the majority of the deposits face the primary diffusion zones. The sizes and shapes of the deposits are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and the largest structures are found to be 22 ± 1 μm in width and 7.9 ± 0.2 μm in height over the microhole. These modified electrodes are employed to detect ammonia using the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim][NTf2], as an electrolyte. Current responses on the cauliflower arrays were seven times higher for linear sweep voltammetry and ca. 12 times higher for chronoamperometry, relative to the bare microrrays, and limits of detection were less than 1 part per million of ammonia (gas phase concentration). This work highlights the use of modified microarrays with highly accessible 3D structures for enhanced electroanalytical detection of analyte species at ultra low concentrations.
Collapse
Affiliation(s)
- Ghulam Hussain
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia
| | - Leigh Aldous
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Debbie S Silvester
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia.
| |
Collapse
|
12
|
Hussain G, O'Mullane AP, Silvester DS. Modification of Microelectrode Arrays with High Surface Area Dendritic Platinum 3D Structures: Enhanced Sensitivity for Oxygen Detection in Ionic Liquids. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E735. [PMID: 30227681 PMCID: PMC6163947 DOI: 10.3390/nano8090735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/29/2022]
Abstract
Electrochemical gas sensors are often used for identifying and quantifying redox-active analyte gases in the atmosphere. However, for amperometric sensors, the current signal is usually dependent on the electroactive surface area, which can become small when using microelectrodes and miniaturized devices. Microarray thin-film electrodes (MATFEs) are commercially available, low-cost devices that give enhanced current densities compared to mm-sized electrodes, but still give low current responses (e.g., less than one nanoamp), when detecting low concentrations of gases. To overcome this, we have modified the surface of the MATFEs by depositing platinum into the recessed holes to create arrays of 3D structures with high surface areas. Dendritic structures have been formed using an additive, lead acetate (Pb(OAc)₂) into the plating solution. One-step and two-step depositions were explored, with a total deposition time of 300 s or 420 s. The modified MATFEs were then studied for their behavior towards oxygen reduction in the room temperature ionic liquid (RTIL) [N8,2,2,2][NTf₂]. Significantly enhanced currents for oxygen were observed, ranging from 9 to 16 times the current of the unmodified MATFE. The highest sensitivity was obtained using a two-step deposition with a total time of 420 s, and both steps containing Pb(OAc)₂. This work shows that commercially-available microelectrodes can be favorably modified to give significantly enhanced analytical performances.
Collapse
Affiliation(s)
- Ghulam Hussain
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Australia.
| | - Anthony P O'Mullane
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia.
| | - Debbie S Silvester
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Australia.
| |
Collapse
|
13
|
Bozorgchenani M, Fischer P, Schnaidt J, Diemant T, Schwarz RM, Marinaro M, Wachtler M, Jörissen L, Behm RJ. Electrocatalytic Oxygen Reduction and Oxygen Evolution in Mg‐Free and Mg–Containing Ionic Liquid 1‐Butyl‐1‐Methylpyrrolidinium Bis (Trifluoromethanesulfonyl) Imide. ChemElectroChem 2018. [DOI: 10.1002/celc.201800508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maral Bozorgchenani
- Institute of Surface Chemistry and CatalysisUlm University Albert-Einstein-Allee 47 D-89081 Ulm Germany
| | - Philipp Fischer
- ZSW – Centre for Solar Energy and Hydrogen Research Baden-Württemberg Helmholtzstr. 8 D-89081 Ulm Germany
| | - Johannes Schnaidt
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage Helmholtzstr. 11 D-89081 Ulm Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640 D-76021 Karlsruhe Germany
| | - Thomas Diemant
- Institute of Surface Chemistry and CatalysisUlm University Albert-Einstein-Allee 47 D-89081 Ulm Germany
| | - Rainer M. Schwarz
- ZSW – Centre for Solar Energy and Hydrogen Research Baden-Württemberg Helmholtzstr. 8 D-89081 Ulm Germany
| | - Mario Marinaro
- ZSW – Centre for Solar Energy and Hydrogen Research Baden-Württemberg Helmholtzstr. 8 D-89081 Ulm Germany
| | - Mario Wachtler
- ZSW – Centre for Solar Energy and Hydrogen Research Baden-Württemberg Helmholtzstr. 8 D-89081 Ulm Germany
| | - Ludwig Jörissen
- ZSW – Centre for Solar Energy and Hydrogen Research Baden-Württemberg Helmholtzstr. 8 D-89081 Ulm Germany
| | - R. Jürgen Behm
- Institute of Surface Chemistry and CatalysisUlm University Albert-Einstein-Allee 47 D-89081 Ulm Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage Helmholtzstr. 11 D-89081 Ulm Germany
| |
Collapse
|
14
|
Wandt J, Lee J, Arrigan DW, Silvester DS. A lithium iron phosphate reference electrode for ionic liquid electrolytes. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Hussain G, Sofianos MV, Lee J, Gibson C, Buckley CE, Silvester DS. Macroporous platinum electrodes for hydrogen oxidation in ionic liquids. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Lee J, Hay CE, Silvester DS. Electrochemical Reduction of 2,4-Dinitrotoluene in Room Temperature Ionic Liquids: A Mechanistic Investigation. Aust J Chem 2018. [DOI: 10.1071/ch18315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The reduction mechanism of 2,4-dinitrotoluene (DNT) has been studied in eight room temperature ionic liquids (RTILs) using cyclic voltammetry (CV), square wave voltammetry (SWV), chronoamperometry, and digital simulation. Two distinctive peaks are observed in the voltammetry, corresponding to the stepwise reduction of the two nitro groups on the aromatic ring. Diffusion coefficients (D) and electron counts (n) were calculated from chronoamperometric transients, revealing an electron count of one in most RTILs, and a linear relationship between D and the inverse of viscosity. Focusing on the first reduction only, the peak appears to be chemically reversible at low concentrations. However, as the concentration increases, the current of the reverse peak diminishes, suggesting that one or more chemical steps occur after the electrochemical step. The results from digital simulation of the CVs in one of the RTILs reveal that the most likely mechanism involves a deprotonation of the methyl group of a parent DNT molecule by the electrogenerated radical anion and/or a dimerisation of two electrogenerated radical anions. Elucidation of the reduction mechanism of DNT (and other explosives) is vital if electrochemical techniques are to be employed to detect these types of compounds in the field.
Collapse
|
17
|
Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids. SENSORS 2017; 17:s17122734. [PMID: 29186869 PMCID: PMC5751384 DOI: 10.3390/s17122734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 01/26/2023]
Abstract
Screen-printed graphite electrodes (SPGEs) have been used for the first time as platforms to detect oxygen gas in room-temperature ionic liquids (RTILs). Up until now, carbon-based SPEs have shown inferior behaviour compared to platinum and gold SPEs for gas sensing with RTIL solvents. The electrochemical reduction of oxygen (O₂) in a range of RTILs has therefore been explored on home-made SPGEs, and is compared to the behaviour on commercially-available carbon SPEs (C-SPEs). Six common RTILs are initially employed for O₂ detection using cyclic voltammetry (CV), and two RTILs ([C₂mim][NTf₂] and [C₄mim][PF₆]) chosen for further detailed analytical studies. Long-term chronoamperometry (LTCA) was also performed to test the ability of the sensor surface for real-time gas monitoring. Both CV and LTCA gave linear calibration graphs-for CV in the 10-100% vol. range, and for LTCA in the 0.1-20% vol. range-on the SPGE. The responses on the SPGE were far superior to the commercial C-SPEs; more instability in the electrochemical responses were observed on the C-SPEs, together with some breaking-up or dissolution of the electrode surface materials. This study highlights that not all screen-printed ink formulations are compatible with RTIL solvents for longer-term electrochemical experiments, and that the choice of RTIL is also important. Overall, the low-cost SPGEs appear to be promising platforms for the detection of O₂, particularly in [C₄mim][PF₆].
Collapse
|
18
|
Hussain G, Silvester DS. Comparison of Voltammetric Techniques for Ammonia Sensing in Ionic Liquids. ELECTROANAL 2017. [DOI: 10.1002/elan.201700555] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ghulam Hussain
- Curtin Institute for Functional Molecules and Interfaces & Department of Chemistry Curtin University GPO Box U1987 Perth 6845, WA Australia
| | - Debbie S. Silvester
- Curtin Institute for Functional Molecules and Interfaces & Department of Chemistry Curtin University GPO Box U1987 Perth 6845, WA Australia
| |
Collapse
|
19
|
Prospects of ionic liquids application in electronic and bioelectronic nose instruments. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Yu HA, Lee J, Lewis SW, Silvester DS. Detection of 2,4,6-Trinitrotoluene Using a Miniaturized, Disposable Electrochemical Sensor with an Ionic Liquid Gel-Polymer Electrolyte Film. Anal Chem 2017; 89:4729-4736. [DOI: 10.1021/acs.analchem.7b00679] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Holly A. Yu
- Curtin
Institute of Functional
Materials and Interfaces, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Junqiao Lee
- Curtin
Institute of Functional
Materials and Interfaces, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Simon W. Lewis
- Curtin
Institute of Functional
Materials and Interfaces, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Debbie S. Silvester
- Curtin
Institute of Functional
Materials and Interfaces, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
21
|
Hussain G, Silvester DS. Detection of sub-ppm Concentrations of Ammonia in an Ionic Liquid: Enhanced Current Density Using “Filled” Recessed Microarrays. Anal Chem 2016; 88:12453-12460. [DOI: 10.1021/acs.analchem.6b03824] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ghulam Hussain
- Nanochemistry Research Institute,
Department of Chemistry, Curtin University, GPOBox U1987, Perth, Western
Australia 6845, Australia
| | - Debbie S. Silvester
- Nanochemistry Research Institute,
Department of Chemistry, Curtin University, GPOBox U1987, Perth, Western
Australia 6845, Australia
| |
Collapse
|
22
|
Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Lee J, Arrigan DWM, Silvester DS. Achievement of Prolonged Oxygen Detection in Room-Temperature Ionic Liquids on Mechanically Polished Platinum Screen-Printed Electrodes. Anal Chem 2016; 88:5104-11. [DOI: 10.1021/acs.analchem.5b04782] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Junqiao Lee
- Nanochemistry Research Institute,
Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western
Australia 6845, Australia
| | - Damien W. M. Arrigan
- Nanochemistry Research Institute,
Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western
Australia 6845, Australia
| | - Debbie S. Silvester
- Nanochemistry Research Institute,
Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western
Australia 6845, Australia
| |
Collapse
|
24
|
Abstract
Superoxide ion (O2(•-)) is of great significance as a radical species implicated in diverse chemical and biological systems. However, the chemistry knowledge of O2(•-) is rather scarce. In addition, numerous studies on O2(•-) were conducted within the latter half of the 20th century. Therefore, the current advancement in technology and instrumentation will certainly provide better insights into mechanisms and products of O2(•-) reactions and thus will result in new findings. This review emphasizes the state-of-the-art research on O2(•-) so as to enable researchers to venture into future research. It comprises the main characteristics of O2(•-) followed by generation methods. The reaction types of O2(•-) are reviewed, and its potential applications including the destruction of hazardous chemicals, synthesis of organic compounds, and many other applications are highlighted. The O2(•-) environmental chemistry is also discussed. The detection methods of O2(•-) are categorized and elaborated. Special attention is given to the feasibility of using ionic liquids as media for O2(•-), addressing the latest progress of generation and applications. The effect of electrodes on the O2(•-) electrochemical generation is reviewed. Finally, some remarks and future perspectives are concluded.
Collapse
Affiliation(s)
| | | | - Inas M AlNashef
- Department of Chemical and Environmental Engineering, Masdar Institute of Science and Technology , Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Lee J, Silvester DS. Low-cost microarray thin-film electrodes with ionic liquid gel-polymer electrolytes for miniaturised oxygen sensing. Analyst 2016; 141:3705-13. [DOI: 10.1039/c6an00281a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of a platinum microarray thin-film electrode together with a gellified ionic-liquid has shown to be highly favourable for long-term oxygen gas sensing.
Collapse
Affiliation(s)
- Junqiao Lee
- Nanochemistry Research Institute
- Department of Chemistry
- Curtin University
- Perth 6845
- Western Australia
| | - Debbie S. Silvester
- Nanochemistry Research Institute
- Department of Chemistry
- Curtin University
- Perth 6845
- Western Australia
| |
Collapse
|
26
|
Murugappan K, Silvester DS. Sensors for highly toxic gases: methylamine and hydrogen chloride detection at low concentrations in an ionic liquid on Pt screen printed electrodes. SENSORS (BASEL, SWITZERLAND) 2015; 15:26866-76. [PMID: 26506358 PMCID: PMC4634386 DOI: 10.3390/s151026866] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022]
Abstract
Commercially available Pt screen printed electrodes (SPEs) have been employed as possible electrode materials for methylamine (MA) and hydrogen chloride (HCl) gas detection. The room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C₂mim][NTf₂]) was used as a solvent and the electrochemical behaviour of both gases was first examined using cyclic voltammetry. The reaction mechanism appears to be the same on Pt SPEs as on Pt microelectrodes. Furthermore, the analytical utility was studied to understand the behaviour of these highly toxic gases at low concentrations on SPEs, with calibration graphs obtained from 10 to 80 ppm. Three different electrochemical techniques were employed: linear sweep voltammetry (LSV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV), with no significant differences in the limits of detection (LODs) between the techniques (LODs were between 1.4 to 3.6 ppm for all three techniques for both gases). The LODs achieved on Pt SPEs were lower than the current Occupational Safety and Health Administration Permissible Exposure Limit (OSHA PEL) limits of the two gases (5 ppm for HCl and 10 ppm for MA), suggesting that Pt SPEs can successfully be combined with RTILs to be used as cheap alternatives for amperometric gas sensing in applications where these toxic gases may be released.
Collapse
Affiliation(s)
- Krishnan Murugappan
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth 6845, WA, Australia.
| | - Debbie S Silvester
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth 6845, WA, Australia.
| |
Collapse
|
27
|
Silvester DS, Aldous L. Electrochemical Detection Using Ionic Liquids. ELECTROCHEMICAL STRATEGIES IN DETECTION SCIENCE 2015. [DOI: 10.1039/9781782622529-00341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ionic liquids are relatively new additions to the field of electrochemical sensing. Despite that, they have had a significant impact, and several major areas are covered herein. This includes the application of ionic liquids in the quantification of heavy metals, explosives, and chemical warfare agents, and in biosensors and bioanalysis. Also highlighted are the significant advantages ionic liquids inherently have with regards to gas sensors and carbon paste electrodes, by virtue of their non-volatility, inherent conductivity, and diversity of structure and function. Finally, their incorporation with carbon nanomaterials to form various gels, pastes, films, and printed electrodes is also highlighted.
Collapse
Affiliation(s)
- Debbie S. Silvester
- Nanochemistry Research Institute, Department of Chemistry, Curtin University Perth, WA Australia
| | - Leigh Aldous
- School of Chemistry, UNSW Australia Sydney, NSW Australia
| |
Collapse
|
28
|
Gębicki J, Kloskowski A, Chrzanowski W, Stepnowski P, Namiesnik J. Application of Ionic Liquids in Amperometric Gas Sensors. Crit Rev Anal Chem 2015; 46:122-38. [DOI: 10.1080/10408347.2014.989957] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Deng H, Stockmann TJ, Peljo P, Opallo M, Girault HH. Electrochemical oxygen reduction at soft interfaces catalyzed by the transfer of hydrated lithium cations. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Panchompoo J, Ge M, Zhao C, Lim M, Aldous L. The Oxygen Reduction Reaction in Ferrofluids: Towards Membrane-less and Spill-less Gas Sensors. Chempluschem 2014. [DOI: 10.1002/cplu.201402105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Electrochemical assessment of water|ionic liquid biphasic systems towards cesium extraction from nuclear waste. Anal Chim Acta 2014; 821:41-7. [DOI: 10.1016/j.aca.2014.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 11/23/2022]
|
32
|
Fernández E, Vidal L, Iniesta J, Metters JP, Banks CE, Canals A. Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid–liquid microextraction for determination of 2,4,6-trinitrotoluene. Anal Bioanal Chem 2013; 406:2197-204. [DOI: 10.1007/s00216-013-7415-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 11/30/2022]
|