1
|
Park S, Kaufman D, Ben-Yoav H, Yossifon G. On-Chip Electrochemical Sensing with an Enhanced Detecting Signal Due to Concentration Polarization-Based Analyte Preconcentration. Anal Chem 2024; 96:6501-6510. [PMID: 38593185 PMCID: PMC11044107 DOI: 10.1021/acs.analchem.4c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Here, we integrated two key technologies within a microfluidic system, an electrokinetic preconcentration of analytes by ion Concentration Polarization (CP) and local electrochemical sensors to detect the analytes, which can synergistically act to significantly enhance the detection signal. This synergistic combination, offering both decoupled and coupled operation modes for continuous monitoring, was validated by the intensified fluorescent intensities of CP-preconcentrated analytes and the associated enhanced electrochemical response using differential pulse voltammetry and chronoamperometry. The system performance was evaluated by varying the location of the active electrochemical sensor, target analyte concentrations, and electrolyte concentration using fluorescein molecules as the model analyte and Homovanillic acid (HVA) as the target bioanalyte within both phosphate-buffered saline (PBS) and artificial sweat solution. The combination of on-chip electrochemical sensing with CP-based preconcentration renders this generic approach adaptable to various analytes. This advanced system shows remarkable promise for enhancing biosensing detection in practical applications while bridging the gap between fundamental research and practical implementation.
Collapse
Affiliation(s)
- Sinwook Park
- School
of Mechanical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Department
of Biomedical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Daniel Kaufman
- Nanobioelectronics
Laboratory (NBEL), Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Hadar Ben-Yoav
- Nanobioelectronics
Laboratory (NBEL), Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Gilad Yossifon
- School
of Mechanical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Department
of Biomedical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
2
|
Park S, Sabbagh B, Abu-Rjal R, Yossifon G. Digital microfluidics-like manipulation of electrokinetically preconcentrated bioparticle plugs in continuous-flow. LAB ON A CHIP 2022; 22:814-825. [PMID: 35080550 DOI: 10.1039/d1lc00864a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we demonstrate digital microfluidics-like manipulations of preconcentrated biomolecule plugs within a continuous flow that is different from the commonly known digital microfluidics involving discrete (i.e. droplets) media. This is realized using one- and two-dimensional arrays of individually addressable ion-permselective membranes with interconnecting microfluidic channels. The location of powered electrodes, dictates which of the membranes are active and generates either enrichment/depletion diffusion layers, which, in turn, control the location of the preconcentrated plug. An array of such powered membranes enables formation of multiple preconcentrated plugs of the same biosample as well as of preconcentrated plugs of multiple biosample types introduced via different inlets in a selective manner. Moreover, digital-microfluidics operations such as up-down and left-right translation, merging, and splitting, can be realized, but on preconcentrated biomolecule plugs instead of on discrete droplets. This technology, based on nanoscale electrokinetics of ion transport through permselective medium, opens future opportunities for smart and programmable digital-like manipulations of preconcentrated biological particle plugs for various on-chip biological applications.
Collapse
Affiliation(s)
- Sinwook Park
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion - Israel Institute of Technology, Technion City 3200000, Israel.
| | - Barak Sabbagh
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion - Israel Institute of Technology, Technion City 3200000, Israel.
| | - Ramadan Abu-Rjal
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion - Israel Institute of Technology, Technion City 3200000, Israel.
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion - Israel Institute of Technology, Technion City 3200000, Israel.
| |
Collapse
|
3
|
Wanasingha N, Dorishetty P, Dutta NK, Choudhury NR. Polyelectrolyte Gels: Fundamentals, Fabrication and Applications. Gels 2021; 7:148. [PMID: 34563034 PMCID: PMC8482214 DOI: 10.3390/gels7030148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/07/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Polyelectrolyte gels are an important class of polymer gels and a versatile platform with charged polymer networks with ionisable groups. They have drawn significant recent attention as a class of smart material and have demonstrated potential for a variety of applications. This review begins with the fundamentals of polyelectrolyte gels, which encompass various classifications (i.e., origin, charge, shape) and crucial aspects (ionic conductivity and stimuli responsiveness). It further centralises recent developments of polyelectrolyte gels, emphasising their synthesis, structure-property relationships and responsive properties. Sequentially, this review demonstrates how polyelectrolyte gels' flourishing properties create attractiveness to a range of applications including tissue engineering, drug delivery, actuators and bioelectronics. Finally, the review outlines the indisputable appeal, further improvements and emerging trends in polyelectrolyte gels.
Collapse
Affiliation(s)
| | | | - Naba K. Dutta
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (N.W.); (P.D.)
| | - Namita Roy Choudhury
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (N.W.); (P.D.)
| |
Collapse
|
4
|
Park S, Buhnik-Rosenblau K, Abu-Rjal R, Kashi Y, Yossifon G. Periodic concentration-polarization-based formation of a biomolecule preconcentrate for enhanced biosensing. NANOSCALE 2020; 12:23586-23595. [PMID: 33210690 DOI: 10.1039/d0nr05930g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionic concentration-polarization (CP)-based biomolecule preconcentration is an established method for enhancing the detection sensitivity of target biomolecules. However, the formed preconcentrated biomolecule plug rapidly sweeps over the surface-immobilized antibodies, resulting in a short-term overlap between the capture agent and the analyte, and subsequently suboptimal binding. To overcome this, we designed a setup allowing for the periodic formation of a preconcentrated biomolecule plug by activating the CP for predetermined on/off intervals. This work demonstrated the feasibility of cyclic CP actuation and optimized the sweeping conditions required to obtain the maximum retention time of a preconcentrated plug over a desired sensing region and enhanced detection sensitivity. The ability of this method to efficiently preconcentrate different analytes and to successfully increase immunoassay sensitivity underscore its potential in immunoassays serving the clinical and food testing industries.
Collapse
Affiliation(s)
- Sinwook Park
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion - Israel Institute of Technology, Technion City 3200000, Israel.
| | | | | | | | | |
Collapse
|
5
|
Park S, Yossifon G. Combining dielectrophoresis and concentration polarization-based preconcentration to enhance bead-based immunoassay sensitivity. NANOSCALE 2019; 11:9436-9443. [PMID: 31038504 DOI: 10.1039/c9nr02506e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ionic concentration-polarization (CP)-based biomolecule preconcentration is an established method for enhancing the detection sensitivity of a target biomolecule immunoassay. However, its main drawback lies in its inability to directly control the spatial overlap between the preconcentrated plug of biomolecules and the surface immobilized antibodies. To overcome this, we simultaneously preconcentrated freely suspended, surface functionalized nanoparticles and target molecules along the edge of a depletion layer, thus, increasing the binding kinetics and avoiding the need to tune their relative locations to ensure their spatial overlap. After the desired incubation time, the nanoparticles were dielectrophoretically trapped for postprocessing analysis of the binding signal. This novel combination of CP-based preconcentration and dielectrophoresis (DEP) was demonstrated through binding of avidin and biotin-conjugated particles as a model bead-based immunoassay, wherein increased detection sensitivity was demonstrated compared to an immunoassay without CP-based preconcentration. The DEP trapping of the beads following binding is important not only for an enhanced detection signal due to the preconcentration of the beads at the electrode edges but also for controlling their location for future applications integrating localized sensors. In addition, DEP may be important also as a preprocessing step for controlling the number of beads participating in the immunoassay.
Collapse
Affiliation(s)
- Sinwook Park
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion - Israel Institute of Technology, Technion City 3200000, Israel.
| | | |
Collapse
|
6
|
Yamamoto S, Himeno M, Kobayashi M, Akamatsu M, Satoh R, Kinoshita M, Sugiura R, Suzuki S. Microchip electrophoresis utilizing an in situ photopolymerized Phos-tag binding polyacrylamide gel for specific entrapment and analysis of phosphorylated compounds. Analyst 2017; 142:3416-3423. [DOI: 10.1039/c7an00836h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A method was developed for the specific entrapment and separation of phosphorylated compounds using a Phos-tag polyacrylamide gel fabricated at the channel crossing point of a microfluidic electrophoresis chip.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Reiko Sugiura
- Faculty of Pharmacy
- Kindai University
- Osaka
- Japan
- Antiaging Center
| | - Shigeo Suzuki
- Faculty of Pharmacy
- Kindai University
- Osaka
- Japan
- Antiaging Center
| |
Collapse
|
7
|
Solid supports for extraction and preconcentration of proteins and peptides in microfluidic devices: A review. Anal Chim Acta 2016; 955:1-26. [PMID: 28088276 DOI: 10.1016/j.aca.2016.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023]
Abstract
Determination of proteins and peptides is among the main challenges of today's bioanalytical chemistry. The application of microchip technology in this field is an exhaustively developed concept that aims to create integrated and fully automated analytical devices able to quantify or detect one or several proteins from a complex matrix. Selective extraction and preconcentration of targeted proteins and peptides especially from biological fluids is of the highest importance for a successful realization of these microsystems. Incorporation of solid structures or supports is a convenient solution employed to face these demands. This review presents a critical view on the latest achievements in sample processing techniques for protein determination using solid supports in microfluidics. The study covers the period from 2006 to 2015 and focuses mainly on the strategies based on microbeads, monolithic materials and membranes. Less common approaches are also briefly discussed. The reviewed literature suggests future trends which are discussed in the concluding remarks.
Collapse
|
8
|
|
9
|
Abstract
Iontronics is an emerging technology based on sophisticated control of ions as signal carriers that bridges solid-state electronics and biological system. It is found in nature, e.g., information transduction and processing of brain in which neurons are dynamically polarized or depolarized by ion transport across cell membranes. It suggests the operating principle of aqueous circuits made of predesigned structures and functional materials that characteristically interact with ions of various charge, mobility, and affinity. Working in aqueous environments, iontronic devices offer profound implications for biocompatible or biodegradable logic circuits for sensing, ecofriendly monitoring, and brain-machine interfacing. Furthermore, iontronics based on multi-ionic carriers sheds light on futuristic biomimic information processing. In this review, we overview the historical achievements and the current state of iontronics with regard to theory, fabrication, integration, and applications, concluding with comments on where the technology may advance.
Collapse
Affiliation(s)
- Honggu Chun
- Department of Biomedical Engineering, Korea University, Seoul 136-701, Korea;
| | | |
Collapse
|
10
|
Breadmore MC, Tubaon RM, Shallan AI, Phung SC, Abdul Keyon AS, Gstoettenmayr D, Prapatpong P, Alhusban AA, Ranjbar L, See HH, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012-2014). Electrophoresis 2015; 36:36-61. [DOI: 10.1002/elps.201400420] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Michael C. Breadmore
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Ria Marni Tubaon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aliaa I. Shallan
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Sui Ching Phung
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aemi S. Abdul Keyon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Faculty of Science; Department of Chemistry, Universiti Teknologi Malaysia; Johor Malaysia
| | - Daniel Gstoettenmayr
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Pornpan Prapatpong
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry, Mahidol University; Rajathevee Bangkok Thailand
| | - Ala A. Alhusban
- Faculty of Health Sciences, School of Pharmacy; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Leila Ranjbar
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Hong Heng See
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Ibnu Sina Institute for Fundamental Science Studies; Universiti Teknologi Malaysia; Johor Malaysia
| | - Mohamed Dawod
- Department of Chemistry; University of Michigan; Ann Arbor MI USA
- Faculty of Pharmacy; Department of Analytical Chemistry, Al-Azhar University; Cairo Egypt
| | - Joselito P. Quirino
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|