1
|
Leal-Duaso A, Salvatella L, Fraile JM. Physical-chemical transformations for the remediation and valorization of hexachlorocyclohexanes (HCHs) including lindane: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124262. [PMID: 39904237 DOI: 10.1016/j.jenvman.2025.124262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/28/2024] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
The production of the former insecticide lindane (γ-HCH) resulted in the generation of vast quantities of hexachlorocyclohexanes (HCH) residues, creating one of the most significant environmental challenges related to persistent organic pollutants in the world. This contamination is present today in different scenarios, including stockpiles and highly concentrated mixed waste, contaminated surface soils, subsoil, and waters. In particular, Dense Non-Aqueous Phase Liquids (DNAPLs) represent challenging subsurface and groundwater contamination. This review provides a comprehensive and critical overview of the physical-chemical methodologies and remediation projects reported in the literature for addressing lindane contamination through separation, transformation, disposal, and valorization approaches. The available physicochemical techniques include dehydrochlorination, oxidation, reduction, substitution, isomerization, as well as electrochemical, photochemical, sonochemical, plasma, and other high energy treatments. Key aspects, such as advantages and limitations, remediation effectiveness, technological maturity, scalability, estimated costs, and applicability to different contamination scenarios are thoroughly analyzed for each method. The review culminates in a detailed comparison of these methodologies for various contamination contexts, providing valuable insights for the identification of optimal solutions to this global environmental challenge. In addition, the review assesses, for the first time, the potential for valorization of the products formed during HCH treatment or remediation. This aspect highlights the opportunity to transform HCH residues into higher value-added chemicals, thereby enhancing the circular economy of the remediation process. Finally, the integration of physicochemical methods with separation and biological tools offers a holistic perspective that underscores the importance of comprehensive strategies for addressing HCH contamination effectively and sustainably.
Collapse
Affiliation(s)
- Alejandro Leal-Duaso
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle Pedro Cerbuna 12, E-50009, Zaragoza, Spain.
| | - Luis Salvatella
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle Pedro Cerbuna 12, E-50009, Zaragoza, Spain
| | - José M Fraile
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle Pedro Cerbuna 12, E-50009, Zaragoza, Spain.
| |
Collapse
|
2
|
Singh AK, Agrahari S, Gautam RK, Tiwari I. A highly efficient NiCo 2O 4 decorated g-C 3N 4 nanocomposite for screen-printed carbon electrode based electrochemical sensing and adsorptive removal of fast green dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67339-67354. [PMID: 37837595 DOI: 10.1007/s11356-023-30373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Herein, we demonstrate the preparation and application of NiCo2O4 decorated over a g-C3N4-based novel nanocomposite (NiCo2O4@g-C3N4). The prepared material was well characterized through several physicochemical techniques, including FT-IR, XRD, SEM, and TEM. The electrochemical characterizations via electrochemical impedance spectroscopy show the low electron transfer resistance of NiCo2O4@g-C3N4 owing to the successful incorporation of NiCo2O4 nanoparticles on the sheets of g-C3N4. NiCo2O4@g-C3N4 nanocomposite was employed in the fabrication of a screen-printed carbon electrode-based innovative electrochemical sensing platform and the adsorptive removal of a food dye, i.e., fast green FCF dye (FGD). The electrochemical oxidation of FGD at the developed NiCo2O4@g-C3N4 nanocomposite modified screen-printed carbon electrode (NiCo2O4@g-C3N4/SPCE) was observed at an oxidation potential of 0.65 V. A wide dual calibration range for electrochemical determination of FGD was successfully established at the prepared sensing platform, showing an excellent LOD of 0.13 µM and sensitivity of 0.6912 µA.µM-1.cm-2 through differential pulse voltammetry. Further, adsorbent dose, pH, contact time, and temperature were optimized to study the adsorption phenomena. The adsorption thermodynamics, isotherm, and kinetics were also investigated for efficient removal of FGD at NiCo2O4@g-C3N4-based adsorbents. The adsorption phenomenon of FGD on NiCo2O4@g-C3N4 was best fitted (R2 = 0.99) with the Langmuir and Henry model, and the corresponding value of Langmuir adsorption efficiency (qm) was 3.72 mg/g for the removal of FGD. The reaction kinetics for adsorption phenomenon were observed to be pseudo-second order. The sensitive analysis of FGD in a real sample was also studied.
Collapse
Affiliation(s)
- Ankit Kumar Singh
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shreanshi Agrahari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ravindra Kumar Gautam
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ida Tiwari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Picomolar, Electrochemical Detection of Paraoxon Ethyl, by Strongly Coordinated NiCo2O4-SWCNT Composite as an Electrode Material. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Feng T, Li H, Gao R, Su G, Wang W, Dong B, Cao L. Manganese Cadmium Sulfide Nanoparticles Solid Solution on Cobalt Acid Nickel Nanoflakes: A Robust Photocatalyst for Hydrogen Evolution. CHEMSUSCHEM 2022; 15:e202200288. [PMID: 35266300 DOI: 10.1002/cssc.202200288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic water splitting for hydrogen evolution is one of the most promising methods to mitigate environmental and energy-related issues. In this study, manganese cadmium sulfide (Mnx Cd1-x S) solid solution is used to construct a p-n heterostructure with NiCo2 O4 through a hydrothermal method. The Mn0.25 Cd0.75 S/NiCo2 O4 composites are used for photocatalytic hydrogen evolution reaction, and the optimal hydrogen rate with 40 mg of Mn0.25 Cd0.75 S/NiCo2 O4 40 mg (MCS/NCO 40) is 61159 μmol g-1 h-1 , which is about 16.3 times than that of pure Mn0.25 Cd0.75 S. After combining with NiCo2 O4 , the light absorption scale, the separation efficiency of photogenerated carriers, and the reaction kinetics are enhanced. Moreover, the band offset of MCS/NCO composites is calculated by the core level alignment method, demonstrating the formation of a p-n heterostructure. The built-in electric field from the p-n heterostructure drives charge transfer and enhances separation efficiency, which results in improved photocatalytic performance.
Collapse
Affiliation(s)
- Ting Feng
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
| | - Haiyan Li
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
| | - Rongjie Gao
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
| | - Ge Su
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
| | - Wei Wang
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
- Aramco Research Center, Boston, Aramco Services Company, 02139, Cambridge, MA, USA
| | - Bohua Dong
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
| | - Lixin Cao
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
| |
Collapse
|
5
|
Rapid and Sensitive Quantification of the Pesticide Lindane by Polymer Modified Electrochemical Sensor. SENSORS 2021; 21:s21020393. [PMID: 33429929 PMCID: PMC7827346 DOI: 10.3390/s21020393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/07/2023]
Abstract
Lindane is documented by the Environmental Protection Agency (EPA) as one of the most toxic registered pesticides. Conventional detection of lindane in the environment requires manual field sampling and complex, time-consuming analytical sample handling relying on skilled labor. In this study, an electrochemical sensing system based on a modified electrode is reported. The system is capable of detecting lindane in aqueous medium in only 20 s. The surface of a conventional carbon electrode is modified with a film of conductive polymer that enables detection of lindane down to 30 nanomolar. The electrode modification procedure is simple and results in a robust sensor that can withstand intensive use. The sensitivity of the sensor is 7.18 µA/µM and the performance was demonstrated in the determination of lindane in spiked ground water. This suggests that the sensor is potentially capable of providing useful readings for decision makers. The rapid and sensitive quantification of lindane in aqueous medium is one step forward to new opportunities for direct, autonomous control of the pesticide level in the environment.
Collapse
|
6
|
Sun B, Li Q, Zheng M, Su G, Lin S, Wu M, Li C, Wang Q, Tao Y, Dai L, Qin Y, Meng B. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114908. [PMID: 32540566 DOI: 10.1016/j.envpol.2020.114908] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) have gained heightened attentions in recent years owing to their persistent property and hazard influence on wild life and human beings. Removal of POPs using varieties of multifunctional materials have shown a promising prospect compared with conventional treatments. Herein, three main categories, including thermal degradation, electrochemical remediation, as well as photocatalytic degradation with the use of diverse catalytic materials, especially the recently developed prominent ones were comprehensively reviewed. Kinetic analysis and underlying mechanism for various POPs degradation processes were addressed in detail. The review also systematically documented how catalytic performance was dramatically affected by the nature of the material itself, the structure of target pollutants, reaction conditions and treatment techniques. Moreover, the future challenges and prospects of POPs degradation by means of multiple multifunctional materials were outlined accordingly. Knowing this is of immense significance to enhance our understanding of POPs remediation procedures and promote the development of novel multifunctional materials.
Collapse
Affiliation(s)
- Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shijing Lin
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuming Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Qin
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
A new approach for electrochemical detection of organochlorine compound lindane: Development of molecular imprinting polymer with polyoxometalate/carbon nitride nanotubes composite and validation. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Sudha V, Senthil Kumar SM, Thangamuthu R. NiCo2O4 nanorod: Synthesis and electrochemical sensing of carcinogenic hydrazine. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Noori JS, Mortensen J, Geto A. Recent Development on the Electrochemical Detection of Selected Pesticides: A Focused Review. SENSORS 2020; 20:s20082221. [PMID: 32326400 PMCID: PMC7218881 DOI: 10.3390/s20082221] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/28/2022]
Abstract
Pesticides are heavily used in agriculture to protect crops from diseases, insects, and weeds. However, only a fraction of the used pesticides reaches the target and the rest slips through the soil, causing the contamination of ground- and surface water resources. Given the emerging interest in the on-site detection of analytes that can replace traditional chromatographic techniques, alternative methods for pesticide measuring have recently encountered remarkable attention. This review gives a focused overview of the literature related to the electrochemical detection of selected pesticides. Here, we focus on the electrochemical detection of three important pesticides; glyphosate, lindane and bentazone using a variety of electrochemical detection techniques, electrode materials, electrolyte media, and sample matrix. The review summarizes the different electrochemical studies and provides an overview of the analytical performances reported such as; the limits of detection and linearity range. This article highlights the advancements in pesticide detection of the selected pesticides using electrochemical methods and point towards the challenges and needed efforts to achieve electrochemical detection suitable for on-site applications.
Collapse
Affiliation(s)
- Jafar Safaa Noori
- IPM—Intelligent Pollutant Monitoring ApS, 2690 Karlslunde, Denmark
- Correspondence:
| | - John Mortensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Alemnew Geto
- IPM—Intelligent Pollutant Monitoring ApS, 2690 Karlslunde, Denmark
| |
Collapse
|
10
|
Yu L, Liu J, Yin W, Yu J, Chen R, Song D, Liu Q, Li R, Wang J. Ionic liquid combined with NiCo2O4/rGO enhances electrochemical oxygen sensing. Talanta 2020; 209:120515. [DOI: 10.1016/j.talanta.2019.120515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 01/24/2023]
|
11
|
Amini R, Asadpour‐Zeynali K. Cauliflower‐like NiCo
2
O
4
−Zn/Al Layered Double Hydroxide Nanocomposite as an Efficient Electrochemical Sensing Platform for Selective Pyridoxine Detection. ELECTROANAL 2020. [DOI: 10.1002/elan.201900600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Roghayeh Amini
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of Tabriz Tabriz 51666-16471 Iran
- Pharmaceutical Analysis Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Karim Asadpour‐Zeynali
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of Tabriz Tabriz 51666-16471 Iran
| |
Collapse
|
12
|
Ganji F, Mohammadi K, Roozbehani B. Efficient synthesis of 4A zeolite based-NiCo2O4 (NiCo2O4@4A) nanocomposite by using hydrothermal method. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Sun FC, Zhang JT, Ren H, Wang ST, Zhou Y, Zhang J. “Dry” NiCo2O4 nanorods for electrochemical non-enzymatic glucose sensing. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1804061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Feng-chao Sun
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Jing-tong Zhang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Ren
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shu-tao Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Yan Zhou
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Zhang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
14
|
Anu Prathap MU, Kaur B, Srivastava R. Electrochemical Sensor Platforms Based on Nanostructured Metal Oxides, and Zeolite-Based Materials. CHEM REC 2018; 19:883-907. [DOI: 10.1002/tcr.201800068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/19/2018] [Indexed: 11/11/2022]
Affiliation(s)
- M. U. Anu Prathap
- Department of Biological Systems Engineering; University of Wisconsin−Madison; 460 Henry Mall Madison, WI 53706 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Balwinder Kaur
- Department of Chemistry; University of Massachusetts Lowell; 256 Riverside Street,Olney Hall Lowell, MA 01845 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Rajendra Srivastava
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| |
Collapse
|
15
|
Masibi KK, Fayemi OE, Adekunle AS, Sherif ESM, Ebenso EE. Electrocatalysis of Lindane Using Antimony Oxide Nanoparticles Based-SWCNT/PANI Nanocomposites. Front Chem 2018; 6:423. [PMID: 30298128 PMCID: PMC6160894 DOI: 10.3389/fchem.2018.00423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022] Open
Abstract
This work describes the chemical synthesis of antimony oxide nanoparticles (AONPs), polyaniline (PANI), acid functionalized single-walled carbon nanotubes (fSWCNTs), and the nanocomposite (AONP-PANI-SWCNT) as catalyst for the trace detection of lindane. Successful synthesis of the nanomaterials was confirmed by Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, x-ray diffraction (XRD) spectroscopy, and scanning electron microscopy (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for investigating the electrochemical behavior of the modified electrodes in the ferrocyanide/ferricyanide ([Fe(CN)6]4−/[Fe(CN)6]3−) redox probe. GCE-AONP-PANI-SWCNT exhibited faster electron transport properties as well as higher electroactivity as compared to bare-GCE, GCE-AONPs, GCE-PANI, and GCE-SWCNT electrodes. Electrocatalytic studies further showed that GCE-AONP-PANI-SWCNT modified electrode was stable (after 20 scans) with only a small current drop in lindane (0.57%). The GCE-AONP-PANI-SWCNT electrode with low detection limit of 2.01 nM performed better toward the detection of lindane as compared to other studies in literature. The GCE-AONP-PANI-SWCNT electrode is highly selective toward the detection of lindane in the presence of various organic and inorganic interfering species. Real sample analysis of river water and tap water samples using the developed sensor gave satisfactory percentage recoveries therefore confirming the potential of the proposed sensor for practical application.
Collapse
Affiliation(s)
- Kgotla K Masibi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.,Material Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Omolola E Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.,Material Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abolanle S Adekunle
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.,Material Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.,Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - El-Sayed M Sherif
- Center of Excellence for Research in Engineering Materials, King Saud University, Al-Riyadh, Saudi Arabia.,Electrochemistry and Corrosion Laboratory, Department of Physical Chemistry, National Research Centre, Cairo, Egypt
| | - Eno E Ebenso
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.,Material Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
16
|
Faria ER, Ribeiro FM, Franco DV, Da Silva LM. Fabrication and characterisation of a mixed oxide-covered mesh electrode composed of NiCo2O4 and its capability of generating hydroxyl radicals during the oxygen evolution reaction in electrolyte-free water. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3815-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Martin ET, McGuire CM, Mubarak MS, Peters DG. Electroreductive Remediation of Halogenated Environmental Pollutants. Chem Rev 2016; 116:15198-15234. [DOI: 10.1021/acs.chemrev.6b00531] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Erin T. Martin
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Caitlyn M. McGuire
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Dennis G. Peters
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
18
|
Ionic liquid-assisted electrochemical determination of pyrimethanil using reduced graphene oxide conjugated to flower-like NiCo2O4. Anal Chim Acta 2016; 935:104-12. [DOI: 10.1016/j.aca.2016.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/03/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022]
|
19
|
Samanta S, Srivastava R. CuCo 2 O 4 based economical electrochemical sensor for the nanomolar detection of hydrazine and metol. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Samanta S, Srivastava R. Simultaneous determination of epinephrene and paracetamol at copper-cobalt oxide spinel decorated nanocrystalline zeolite modified electrodes. J Colloid Interface Sci 2016; 475:126-135. [PMID: 27161810 DOI: 10.1016/j.jcis.2016.04.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 11/16/2022]
Abstract
In this study, CuCo2O4 and CuCo2O4 decorated nanocrystalline ZSM-5 materials were prepared. For comparative study, a series of MCo2O4 spinels were also prepared. Materials were characterized by the complementary combination of X-ray diffraction, N2-adsorption, UV-visible, and electron microscopic techniques. A simple and rapid method for the simultaneous determination of paracetamol and epinephrine at MCo2O4 spinels modified electrodes is presented in this manuscript. Among the materials investigated in this study, CuCo2O4 decorated nanocrystalline ZSM-5 exhibited the highest electrocatalytic activity with excellent stability, sensitivity, and selectivity. Analytical performance of the sensor was demonstrated in the determination of epinephrine and paracetamol in the commercial pharmaceutical samples.
Collapse
Affiliation(s)
- Subhajyoti Samanta
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar 140001, India
| | - Rajendra Srivastava
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar 140001, India.
| |
Collapse
|
21
|
Prathap MUA, Sun S, Xu ZJ. An electrochemical sensor highly selective for lindane determination: a comparative study using three different α-MnO2 nanostructures. RSC Adv 2016. [DOI: 10.1039/c5ra26771d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here we describe the electrochemical detection of lindane on α-MnO2 nanostructures.
Collapse
Affiliation(s)
- M. U. Anu Prathap
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Shengnan Sun
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Zhichuan J. Xu
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
22
|
Shanmugavani A, Selvan RK. Microwave assisted reflux synthesis of NiCo 2 O 4 /NiO composite: Fabrication of high performance asymmetric supercapacitor with Fe 2 O 3. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.043] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Gong L, Yan H, Dai H, Zhang S, Li Y, Zhang Q, Lin Y, Hong Z. Highly sensitive and stabilized sensing of 6-benzylaminopurine based on NiCo2O4 nanosuperstructures. RSC Adv 2016. [DOI: 10.1039/c5ra23343g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An ultrasensitive electrochemical sensor based on NiCo2O4 nanosuperstructures was proposed to determine 6-benzylaminopurine contamination in food.
Collapse
Affiliation(s)
- Lingshan Gong
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Huixiang Yan
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Hong Dai
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Shupei Zhang
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Yilin Li
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Qingrong Zhang
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Yanyu Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials
- College of Physics and Energy
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Zhensheng Hong
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials
- College of Physics and Energy
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| |
Collapse
|
24
|
Yang J, Cho M, Lee Y. Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosens Bioelectron 2016; 75:15-22. [DOI: 10.1016/j.bios.2015.08.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/02/2015] [Accepted: 08/06/2015] [Indexed: 11/15/2022]
|
25
|
Anu Prathap MU, Sun S, Wei C, Xu ZJ. A novel non-enzymatic lindane sensor based on CuO-MnO2 hierarchical nano-microstructures for enhanced sensitivity. Chem Commun (Camb) 2015; 51:4376-9. [PMID: 25674914 DOI: 10.1039/c5cc00024f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we present new results about the non-enzymatic detection of lindane by using CuO-MnO2 hierarchical nano-microstructures. The linear range for the determination of lindane is up to 700 μM with a limit of detection of 4.8 nM, which is much lower than for other non-enzymatic lindane sensors.
Collapse
Affiliation(s)
- M U Anu Prathap
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | | | | | | |
Collapse
|
26
|
Liu S, Hu L, Xu X, Al-Ghamdi AA, Fang X. Nickel Cobaltite Nanostructures for Photoelectric and Catalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4267-4283. [PMID: 26121217 DOI: 10.1002/smll.201500315] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/06/2015] [Indexed: 06/04/2023]
Abstract
Bimetallic oxide nickel cobaltite (NiCo2 O4 ) shows extensive potential for innovative photoelectronic and energetic materials owing to their distinctive physical and chemical properties. In this review, representative fabrications and applications of NiCo2 O4 nanostructures are outlined for photoelectronic conversion, catalysis, and energy storage, aiming to promote the development of NiCo2 O4 nanomaterials in these fields through an analysis and comparison of their diverse nanostructures. Firstly, a brief introduction of the spinel structures, properties, and morphologies of NiCo2 O4 nanomaterials are presented. Then, the advanced progress of NiCo2 O4 nanomaterials for both photoelectronic conversion and energy fields is summarized including such examples as solar cells, electrocatalysis, and lithium ion batteries. Finally, further prospects and promising developments of NiCo2 O4 nanomaterials in these significant fields are proposed.
Collapse
Affiliation(s)
- Shaoxiong Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Linfeng Hu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaojie Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ahmed A Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
27
|
Kaur B, Srivastava R, Satpati B. Silver nanoparticle decorated polyaniline–zeolite nanocomposite material based non-enzymatic electrochemical sensor for nanomolar detection of lindane. RSC Adv 2015. [DOI: 10.1039/c5ra09461e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a silver nanoparticle decorated polyaniline-nanocrystalline zeolite organic–inorganic hybrid material was synthesized for the electrochemical detection of lindane.
Collapse
Affiliation(s)
- Balwinder Kaur
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| | - Rajendra Srivastava
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| | - Biswarup Satpati
- Surface Physics and Material Science Division
- Saha Institute of Nuclear Physics
- Kolkata 700 064
- India
| |
Collapse
|
28
|
Kaur B, Satpati B, Srivastava R. Synthesis of NiCo2O4/Nano-ZSM-5 nanocomposite material with enhanced electrochemical properties for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. NEW J CHEM 2015. [DOI: 10.1039/c4nj01360c] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high electrocatalytic activity of the sensor can be attributed to the highly dispersed NiCo2O4 on Nano-ZSM-5 matrix.
Collapse
Affiliation(s)
- Balwinder Kaur
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| | - Biswarup Satpati
- Surface Physics and Material Science Division
- Saha Institute of Nuclear Physics
- Kolkata 700 064
- India
| | - Rajendra Srivastava
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| |
Collapse
|
29
|
Xiao X, Yang F, Cheng K, Wang X, Yin J, Ye K, Wang G, Cao D. NiCo2O4 nanostructures with various morphologies as the high-performance electrocatalysts for H2O2 electroreduction and electrooxidation. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Prathap MA, Satpati B, Srivastava R. Facile preparation of β-Ni(OH)2-NiCo2O4 hybrid nanostructure and its application in the electro-catalytic oxidation of methanol. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.043] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|