1
|
Ji F, Wang P, Li Z, Ji K, Wang D, Ma Q. Cu superparticle-based aggregation induced enhancement strategy with PVDF-HFP/CeVO 4 NP sensing interface for miR-103a detection. Talanta 2024; 276:126289. [PMID: 38776779 DOI: 10.1016/j.talanta.2024.126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Aggregation-induced emission (AIE) has been widely used in research on electrochemiluminescence (ECL) due to its excellent luminescence intensity. In this work, copper superparticles (Cu SPs) were used to construct ECL biosensor to detect the microRNA-103a (miRNA-103a) in triple-negative breast cancer (TNBC) tumor tissues. Firstly, GSH-capped copper clusters were used as precursors to prepare Cu SPs by the AIE effect. Compared with clusters, Cu SPs possessed higher luminescence performance and energy stability, making them an ideal choice for ECL nanoprobe. The film of PVDF-HFP/CeVO4 NPs was constructed and modified with CPBA and GSH as the sensing interface (PCCG). The PCCG film displayed good conductivity and hydrophilicity, and desirable mechanical stability. Moreover, the PCCG film can induce high carrier mobility rates and dissociate large amounts of the co-reactant K2S2O8 to enhance the ECL intensity of Cu SPs. As a result, the prepared ECL sensor with the catalyzed hairpin assembly (CHA) strategy was employed to quantify miRNA-103a in the range of 100 fM to 100 nM. The biosensor provided a novel analytical approach for the clinical diagnosis of TNBC.
Collapse
Affiliation(s)
- Fangyan Ji
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Kaixiang Ji
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dongyu Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Munyayi TA, Mulder DW, Conradie EH, Johannes Smit F, Vorster BC. Quantitative Galactose Colorimetric Competitive Assay Based on Galactose Dehydrogenase and Plasmonic Gold Nanostars. BIOSENSORS 2023; 13:965. [PMID: 37998140 PMCID: PMC10669336 DOI: 10.3390/bios13110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
We describe a competitive colorimetric assay that enables rapid and sensitive detection of galactose and reduced nicotinamide adenine dinucleotide (NADH) via colorimetric readouts and demonstrate its usefulness for monitoring NAD+-driven enzymatic reactions. We present a sensitive plasmonic sensing approach for assessing galactose concentration and the presence of NADH using galactose dehydrogenase-immobilized gold nanostars (AuNS-PVP-GalDH). The AuNS-PVP-GalDH assay remains turquoise blue in the absence of galactose and NADH; however, as galactose and NADH concentrations grow, the reaction well color changes to a characteristic red color in the presence of an alkaline environment and a metal ion catalyst (detection solution). As a result, when galactose is sensed in the presence of H2O2, the colored response of the AuNS-PVP-GalDH assay transforms from turquoise blue to light pink, and then to wine red in a concentration-dependent manner discernible to the human eye. This competitive AuNS-PVP-GalDH assay could be a viable analytical tool for rapid and convenient galactose quantification in resource-limited areas.
Collapse
Affiliation(s)
| | - Danielle Wingrove Mulder
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| | - Engela Helena Conradie
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| | - Frans Johannes Smit
- Research Focus Area for Chemical Resource Beneficiation, North-West University, Potchefstroom 2520, South Africa;
| | - Barend Christiaan Vorster
- Center for Human Metabolomics, North-West University Potchefstroom Campus, Potchefstroom 2531, South Africa; (D.W.M.); (E.H.C.); (B.C.V.)
| |
Collapse
|
3
|
Roy A, De SK, Dey S, Bhattacharya M, Satpati B, Senapati D. Resultant inward imbalanced seeding force (RIISF)-induced concave gold nanostar (CAuNS) for non-enzymatic electrocatalytic detection of serotonin and Kynurenine in human serum. Anal Chim Acta 2023; 1248:340908. [PMID: 36813459 DOI: 10.1016/j.aca.2023.340908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
CTAC-based gold nanoseed-induced concave curvature evolution of surface boundary planes from concave gold nanocube (CAuNC) to concave gold nanostar (CAuNS) has been achieved by a novel synthetic methodology simply by controlling the extent of seed used and hence the generated 'Resultant Inward Imbalanced Seeding Force (RIISF)'. The resultant CAuNS shows an excellent enhancement in catalytic activity compared to CAuNC and other intermediates as a function of curvature-induced anisotropy. Detailed characterization evaluates the presence of an enhanced number of multiple defect sites, high energy facets, larger surface area, and roughened surface which ultimately results in an increased mechanical strain, coordinately unsaturation, and multifacet-oriented anisotropic behavior suitable for positive influence on the binding affinity of CAuNSs. While different crystalline and structural parameters improve their catalytic activity, the resultant uniform three-dimensional (3D) platform shows comparatively easy pliability and well absorptivity on the glassy carbon electrode surface for increased shelf life, a uniform structure to confine a large extent of stoichiometric systems, and long-term stability under ambient conditions for making this newly developed material a unique nonenzymatic scalable universal electrocatalytic platform. With the help of various electrochemical measurements, the ability of the platform has been established by performing highly specific and sensitive detection of the two most important human bio messengers: Serotonin (STN) and Kynurenine (KYN) which are metabolites of L-Tryptophan in the human body system. The present study mechanistically surveys the role of seed-induced RIISF-modulated anisotropy in controlling the catalytic activity which offers a universal 3D electrocatalytic sensing tenet by an electrocatalytic approach.
Collapse
Affiliation(s)
- Anuradha Roy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Sandip Kumar De
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Suman Dey
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Maireyee Bhattacharya
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Biswarup Satpati
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India.
| |
Collapse
|
4
|
Al-Otaibi JS, Sheena Mary Y, Shyma Mary Y, Kumar Trivedi R, Chakraborty B, Churchill DG. Theoretical SERS study of the strength and suitability of Cu12 nanostar for SERS: Complete theoretical studies, coinage metal SM12 comparisons, benzothiazole (BTH) adsorbent. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Ghaseminasab K, Aletah N, Hasanzadeh M, Liu Y, Seidi F. Quantification of quetiapine fumarate based on electrochemical analysis by reduced graphene oxide modified nano-silica functionalized with polydopamine and gold nanostars: A novel pharmaceutical analysis strategy. J Mol Recognit 2022; 35:e2977. [PMID: 35642074 DOI: 10.1002/jmr.2977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Quetiapine fumarate (QF) is an antipsychotic drug that has been most widely prescribed as an antipsychotic. In this regard, sensitive recognition of QF in bodily fluids must be done accurately. In this work, an electrochemical sensor for QF detection was fabricated, using GNSs-PDA@SiO2 modified rGO stabilized on glassy carbon electrode (GCE). According to the electrical nature of gold nanoparticles (GNPs), polydopamine (PDA), and its composition with nano-silica, the proposed hybrid material is able to enhance the electro-oxidation signals of QF towards its sensitive detection in complex biological media. The morphology of synthesized polymeric nanocomposites and various surfaces of electrodes were investigated using Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-Ray Spectroscopy (EDS) methods. Using the square wave voltammetry technique, the fabricated electrochemical sensor could detect QF in the linear range of 500 μM to 3 mM, which low limit of quantification (LLOQ) was obtained as 500 μM, indicating the sensor's appropriate sensitivity. For the first time, the application of novel hybrid material (GNSs-PDA@SiO2 ) for pharmaceutical analysis in human plasma was studied using electrochemical sensor technology. Based on the obtained analytical results, engineered nano-surface led to entrapment and oxidation of QF in real samples. So, a novel and efficient method for the analysis of QF was designed and validated, which opens a new horizon for pharmaceutical analysis and Therapeutic Drug Monitoring (TDM).
Collapse
Affiliation(s)
- Kambiz Ghaseminasab
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Aletah
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yuqian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Mohd Asri MA, Mak WC, Norazman SA, Nordin AN. Low-cost and rapid prototyping of integrated electrochemical microfluidic platforms using consumer-grade off-the-shelf tools and materials. LAB ON A CHIP 2022; 22:1779-1792. [PMID: 35293400 DOI: 10.1039/d1lc01100f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present a low-cost, accessible, and rapid fabrication process for electrochemical microfluidic sensors. This work leverages the accessibility of consumer-grade electronic craft cutters as the primary tool for patterning of sensor electrodes and microfluidic circuits, while commodity materials such as gold leaf, silver ink pen, double-sided tape, plastic transparency films, and fabric adhesives are used as its base structural materials. The device consists of three layers, the silver reference electrode layer at the top, the PET fluidic circuits in the middle and the gold sensing electrodes at the bottom. Separation of the silver reference electrode from the gold sensing electrodes reduces the possibility of cross-contamination during surface modification. A novel approach in mesoscale patterning of gold leaf electrodes can produce generic designs with dimensions as small as 250 μm. Silver electrodes with dimensions as small as 385 μm were drawn using a plotter and a silver ink pen, and fluid microchannels as small as 300 μm were fabricated using a sandwich of iron-on adhesives and PET. Device layers are then fused together using an office laminator. The integrated microfluidic electrochemical platform has electrode kinetics/performance of ΔEp = 91.3 mV, Ipa/Ipc = 0.905, characterized by cyclic voltammetry using a standard ferrocyanide redox probe, and this was compared against a commercial screen-printed gold electrode (ΔEp = 68.9 mV, Ipa/Ipc = 0.984). To validate the performance of the integrated microfluidic electrochemical platform, a catalytic hydrogen peroxide sensor and enzyme-coupled glucose biosensors were developed as demonstrators. Hydrogen peroxide quantitation achieves a limit of detection of 0.713 mM and sensitivity of 78.37 μA mM-1 cm-2, while glucose has a limit of detection of 0.111 mM and sensitivity of 12.68 μA mM-1 cm-2. This rapid process allows an iterative design-build-test cycle in under 2 hours. The upfront cost to set up the system is less than USD 520, with each device costing less than USD 0.12, making this manufacturing process suitable for low-resource laboratories or classroom settings.
Collapse
Affiliation(s)
- Mohd Afiq Mohd Asri
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia.
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Siti Azizah Norazman
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia.
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia.
| |
Collapse
|
7
|
Advances in Colorimetric Assay Based on AuNPs Modified by Proteins and Nucleic Acid Aptamers. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review is focused on the biosensing assay based on AuNPs (AuNPs) modified by proteins, peptides and nucleic acid aptamers. The unique physical properties of AuNPs allow their modification by proteins, peptides or nucleic acid aptamers by chemisorption as well as other methods including physical adsorption and covalent immobilization using carbodiimide chemistry or based on strong binding of biotinylated receptors on neutravidin, streptavidin or avidin. The methods of AuNPs preparation, their chemical modification and application in several biosensing assays are presented with focus on application of nucleic acid aptamers for colorimetry assay for determination of antibiotics and bacteria in food samples.
Collapse
|
8
|
Tran HL, Darmanto W, Doong RA. Electrochemical immunosensor for ultra-sensitive detection of attomolar prostate specific antigen with sulfur-doped graphene quantum dot@gold nanostar as the probe. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Aldea A, Leote RJB, Matei E, Evanghelidis A, Enculescu I, Diculescu VC. Gold coated electrospun polymeric fibres as new electrode platform for glucose oxidase immobilization. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Koetz J. The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2187. [PMID: 33147806 PMCID: PMC7694140 DOI: 10.3390/nano10112187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
A surface modification of ultraflat gold nanotriangles (AuNTs) with different shaped nanoparticles is of special relevance for surface-enhanced Raman scattering (SERS) and the photo-catalytic activity of plasmonic substrates. Therefore, different approaches are used to verify the flat platelet morphology of the AuNTs by oriented overgrowth with metal nanoparticles. The most important part for the morphological transformation of the AuNTs is the coating layer, containing surfactants or polymers. By using well established AuNTs stabilized by a dioctyl sodium sulfosuccinate (AOT) bilayer, different strategies of surface modification with noble metal nanoparticles are possible. On the one hand undulated superstructures were synthesized by in situ growth of hemispherical gold nanoparticles in the polyethyleneimine (PEI)-coated AOT bilayer of the AuNTs. On the other hand spiked AuNTs were obtained by a direct reduction of Au3+ ions in the AOT double layer in presence of silver ions and ascorbic acid as reducing agent. Additionally, crumble topping of the smooth AuNTs can be realized after an exchange of the AOT bilayer by hyaluronic acid, followed by a silver-ion mediated reduction with ascorbic acid. Furthermore, a decoration with silver nanoparticles after coating the AOT bilayer with the cationic surfactant benzylhexadecyldimethylammonium chloride (BDAC) can be realized. In that case the ultraviolet (UV)-absorption of the undulated Au@Ag nanoplatelets can be tuned depending on the degree of decoration with silver nanoparticles. Comparing the Raman scattering data for the plasmon driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4'-dimercaptoazobenzene (DMAB) one can conclude that the most important effect of surface modification with a 75 times higher enhancement factor in SERS experiments becomes available by decoration with gold spikes.
Collapse
Affiliation(s)
- Joachim Koetz
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 25, 14476 Potsdam, Germany
| |
Collapse
|
11
|
Ngamaroonchote A, Sanguansap Y, Wutikhun T, Karn-Orachai K. Highly branched gold-copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide. Mikrochim Acta 2020; 187:559. [PMID: 32915302 DOI: 10.1007/s00604-020-04542-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022]
Abstract
The development of highly sensitive and highly selective sensors for non-enzymatic glucose and hydrogen peroxide (H2O2) detection using gold-copper alloy nanoparticles (AuCu alloy NPs) is reported. The AuCu NPs are nanostructures with branches and can be used as an electrochemical catalyst. Series of AuCu alloy NPs with various metal ratios are synthesized through a coreduction reaction. The morphology of AuCu alloy NPs is altered from highly branched structures (nanourchin, nanobramble, nanostar, nanocrystal) to a spherical shape by increasing Au content in the synthesis reaction. Cu-rich AuCu nanobramble and Au-rich AuCu nanostar exhibit selective electrocatalysis behaviors toward electro-oxidation of glucose and electroreduction of H2O2, respectively. The AuCu nanobramble-based sensor holds great potential in glucose detection with a linear working range of 0.25 to 10 mM. The sensor possesses a sensitivity of 339.35 μA mM-1 cm-2, a limit of detection (LOD) of 16.62 μM, which is an acceptable selectivity and good stability. In addition, the AuCu nanostar-based sensor shows excellent electrochemical responses toward H2O2 reduction with good selectivity, reproducibility, and a short response time of about 2-3 s. The linear range for H2O2 determination is 0.05 to 10 mM, with LOD and sensitivity of 10.93 μM and 133.74 μA mM-1 cm-2, respectively. The good sensing performance is a result of the synergistic surface structure and atomic composition effects, which leads AuCu alloys to be a promising nanocatalyst for sensing both glucose and H2O2. Graphical abstract Schematic illustration presents the construction of gold-copper alloy nanoparticles (AuCu alloy NPs) on the surface of screen-printed carbon electrode (SPCE). The highly branched nanostructures of AuCu alloys with different surface structure and metal ratios give selective electrocatalysis behaviors. Cu-rich AuCu nanobramble-based sensor reveals prominent electrocatalytic activity for glucose detection. Au-rich AuCu nanostar-based sensor provides good electrochemical response for H2O2 detection.
Collapse
Affiliation(s)
- Aroonsri Ngamaroonchote
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Yanisa Sanguansap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Tuksadon Wutikhun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kullavadee Karn-Orachai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
12
|
Demille TB, Hughes RA, Dominique N, Olson JE, Rouvimov S, Camden JP, Neretina S. Large-area periodic arrays of gold nanostars derived from HEPES-, DMF-, and ascorbic-acid-driven syntheses. NANOSCALE 2020; 12:16489-16500. [PMID: 32790810 DOI: 10.1039/d0nr04141f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With arms radiating from a central core, gold nanostars represent a unique and fascinating class of nanomaterials from which extraordinary plasmonic properties are derived. Despite their relevance to sensing applications, methods for fabricating homogeneous populations of nanostars on large-area planar surfaces in truly periodic arrays is lacking. Herein, the fabrication of nanostar arrays is demonstrated through the formation of hexagonal patterns of near-hemispherical gold seeds and their subsequent exposure to a liquid-state chemical environment that is conducive to colloidal nanostar formation. Three different colloidal nanostar protocols were targeted where HEPES, DMF, and ascorbic acid represent a key reagent in their respective redox chemistries. Only the DMF-driven synthesis proved readily adaptable to the substrate-based platform but nanostar-like structures emerged from the other protocols when synthetic controls such as reaction kinetics, the addition of Ag+ ions, and pH adjustments were applied. Because the nanostars were derived from near-hemispherical seeds, they acquired a unique geometry that resembles a conventional nanostar that has been truncated near its midsection. Simulations of plasmonic properties of this geometry reveal that such structures can exhibit maximum near-field intensities that are as much as seven-times greater than the standard nanostar geometry, a finding that is corroborated by surface-enhanced Raman scattering (SERS) measurements showing large enhancement factors. The study adds nanostars to the library of nanostructure geometries that are amenable to large-area periodic arrays and provides a potential pathway for the nanofabrication of SERS substrates with even greater enhancements.
Collapse
Affiliation(s)
- Trevor B Demille
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Photoelectrochemical immunoassay platform based on MoS 2 nanosheets integrated with gold nanostars for neuron-specific enolase assay. Mikrochim Acta 2020; 187:480. [PMID: 32743701 DOI: 10.1007/s00604-020-04411-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/23/2020] [Indexed: 02/01/2023]
Abstract
MoS2 nanosheets were prepared by exfoliating MoS2 bulk crystals with ultrasonication in N-methylpyrrolidone and were integrated with gold nanostars (AuNS) to fabricate an AuNS/MoS2 nanocomposite. All nanomaterials were characterized by transmission electron microscope, scanning electron microscope, ultraviolet-visible spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. AuNS/MoS2 nanocomposites were coated onto a glassy carbon electrode (GCE) surface to construct a nanointerface for immobilizing neuron-specific enolase antibody (anti-NSE) thus forming a photoelectrochemical immunoassay system. AuNS can significantly promote the photoelectric conversion of MoS2 nanosheets improving the performance for a photoelectrochemical assay. Being illuminated with white light LED and controlling the potential at 0.05 V (vs. SCE), the photocurrent generated from anti-NSE(BSA)/AuNS/MoS2/GCE using 0.15 mol L-1 ascorbic acid as electron donor can be recorded with amperometry and used as an output signal for NSE quantitative assay. Under optimized experimental conditions, the photocurrent variation for the affinity-binding NSE is proportional to the logarithm of NSE concentration in the range 5.0 pg mL-1 to 1.5 ng mL-1 with a detection limit of 3.5 pg mL-1 (S/N = 3). The practicability of the PEC immunoassay system was evaluated by determining NSE in clinical serum samples. The recoveries ranged from 93.0 to 103% for the determination of NSE in serum samples with a standard addition method. The PEC immunoassay system possesses good accuracy for determining NSE in real samples. Graphical abstract.
Collapse
|
14
|
Fong P, Cheong C, Mak K, Lei C, Ho M, Ao C, Meng L. Effects of Cordycepin, Gold Nanostar, and Their Combination on Endometrial Cancer Cells. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20946939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence rate of (EC) has increased significantly in the past 2 decades. The current chemotherapy for this disease can cause intolerable side effects. Recently, both cordycepin and gold nanostars have demonstrated the ability to inhibit the growth and differentiation of cancers. This study aimed to investigate the antiEC effects of cordycepin, gold nanostars (Au NS), and the combination of the two. The gold nanostars were made by seed-mediated reduction, and their morphology was confirmed by laser particle size analysis, spectrophotometry, and electron microscopy. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity assays, clonogenic assays, and flow cytometry were employed to evaluate the inhibition rate, survival fraction, and apoptosis in HEC-1A cells under different concentrations of cordycepin, Au NS, and their combination. This study revealed that both cordycepin and Au NS with 808 nm light exposure could inhibit cell proliferation, cause cell apoptosis, and inhibit the clone ability of EC cells. This study supports further investigations into Au NS-cordycepin in the development of new treatments for EC.
Collapse
Affiliation(s)
- Pedro Fong
- School of Health Sciences, Macao Polytechnic Institute, Macao, People’s Republic of China
| | - Chicheng Cheong
- School of Health Sciences, Macao Polytechnic Institute, Macao, People’s Republic of China
| | - Kawai Mak
- School of Health Sciences, Macao Polytechnic Institute, Macao, People’s Republic of China
| | - Chicheng Lei
- School of Health Sciences, Macao Polytechnic Institute, Macao, People’s Republic of China
| | - Manhei Ho
- School of Health Sciences, Macao Polytechnic Institute, Macao, People’s Republic of China
| | - Chengngok Ao
- School of Health Sciences, Macao Polytechnic Institute, Macao, People’s Republic of China
| | - Lirong Meng
- School of Health Sciences, Macao Polytechnic Institute, Macao, People’s Republic of China
| |
Collapse
|
15
|
Simultaneous voltammetric detection of cadmium(II), arsenic(III), and selenium(IV) using gold nanostar-modified screen-printed carbon electrodes and modified Britton-Robinson buffer. Anal Bioanal Chem 2020; 412:4113-4125. [PMID: 32296905 DOI: 10.1007/s00216-020-02642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
The present work reports a newly developed square wave anodic stripping voltammetry (SWASV) methodology using novel gold nanostar-modified screen-printed carbon electrodes (AuNS/SPCE) and modified Britton-Robinson buffer (mBRB) for simultaneous detection of trace cadmium(II), arsenic(III), and selenium(IV). During individual and simultaneous detection, Cd2+, As3+, and Se4+ exhibited well-separated SWASV peaks at approximately - 0.48, - 0.09, and 0.65 V, respectively (versus Ag/AgCl reference electrode), which enabled a highly selective detection of the three analytes. Electrochemical impedance spectrum tests showed a significant decrease in charge transfer resistance with the AuNS/SPCE (0.8 kΩ) compared with bare SPCE (2.4 kΩ). Cyclic voltammetry experiments showed a significant increase in electroactive surface area with electrode modification. The low charge transfer resistance and high electroactive surface area contributed to the high sensitivity for Cd2+ (0.0767 μA (0.225 μg L-1)-1), As3+ (0.2213 μA (μg L-1)-1), and Se4+ (μA (μg L-1)-1). The three analytes had linear stripping responses over the concentration range of 0 to 100 μg L-1, with the obtained LoD for Cd2+, As3+, and Se4+ of 1.6, 0.8, and 1.6 μg L-1, respectively. In comparison with individual detection, the simultaneous detection of As3+ and Se4+ showed peak height reductions of 40.8% and 42.7%, respectively. This result was associated with the possible formation of electrochemically inactive arsenic triselenide (As2Se3) during the preconcentration step. Surface water analysis resulted in average percent recoveries of 109% for Cd2+, 93% for As3+, and 92% for Se4+, indicating the proposed method is accurate and reliable for the simultaneous detection of Cd2+, As3+, and Se4+ in real water samples. Graphical abstract.
Collapse
|
16
|
Silveira CM, Zumpano R, Moreira M, Almeida MP, Oliveira MJ, Bento M, Montez C, Paixão I, Franco R, Pereira E, Almeida MG. Star‐Shaped Gold Nanoparticles as Friendly Interfaces for Protein Electrochemistry: the Case Study of Cytochrome
c. ChemElectroChem 2019. [DOI: 10.1002/celc.201901393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Célia M. Silveira
- UCIBIO, REQUIMTE Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
| | - Rosaceleste Zumpano
- Department of Chemistry and Drug Technologies Sapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy
| | - Miguel Moreira
- UCIBIO, REQUIMTE Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
| | - Miguel Peixoto Almeida
- LAQV, REQUIMTE, Dep. Química e Bioquímica Faculdade de Ciências Universidade do Porto 4169-007 Porto Portugal
| | - Maria João Oliveira
- UCIBIO, REQUIMTE Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
- i3 N/CENIMAT, Dep. Ciência dos Materiais Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa and CEMOP/UNINOVA 2829-516 Caparica Portugal
| | - Marina Bento
- UCIBIO, REQUIMTE Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
| | - Cláudia Montez
- UCIBIO, REQUIMTE Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
| | - Inês Paixão
- UCIBIO, REQUIMTE Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
| | - Ricardo Franco
- UCIBIO, REQUIMTE Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
| | - Eulália Pereira
- LAQV, REQUIMTE, Dep. Química e Bioquímica Faculdade de Ciências Universidade do Porto 4169-007 Porto Portugal
| | - M. Gabriela Almeida
- UCIBIO, REQUIMTE Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte de Caparica Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM) Instituto Superior de Ciências da Saúde Egas Moniz Campus Universitário, Quinta da Granja 2829-511 Caparica Portugal
| |
Collapse
|
17
|
Phiri MM, Mulder DW, Vorster BC. Seedless gold nanostars with seed-like advantages for biosensing applications. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181971. [PMID: 30891302 PMCID: PMC6408411 DOI: 10.1098/rsos.181971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 05/04/2023]
Abstract
Gold nanostars (AuNSs) are seen as promising building blocks for biosensors with potential for easy readouts based on naked-eye and ultraviolet-visible spectroscopy detection. We present a seedless synthesis strategy for AuNSs that has the advantages of the seeded methods. The method used ascorbic acid as a reducing agent and silver nitrate as an anisotropic growth control assisting agent. AuNSs with multiple branches and a diameter of 59 nm were produced. They showed good stability when capped with PVP and modified with an enzyme in relatively strong ionic conditions. We investigated their application in plasmonic sensing by modifying them with glucose oxidase and detection of glucose. The AuNSs were found to be a good scaffold for the enzyme, proved to be stable and sensitive as transducers. Thus, the AuNSs showed good promise for further applications in plasmonic biosensing for in vivo biomedical diagnosis.
Collapse
Affiliation(s)
- Masauso Moses Phiri
- Centre for Human Metabolomics, North-West University, P/Bag X6001, Hoffman Street, Potchefstroom 2520, South Africa
| | | | | |
Collapse
|
18
|
Liebig F, Henning R, Sarhan RM, Prietzel C, Schmitt CNZ, Bargheer M, Koetz J. A simple one-step procedure to synthesise gold nanostars in concentrated aqueous surfactant solutions. RSC Adv 2019; 9:23633-23641. [PMID: 35530609 PMCID: PMC9069482 DOI: 10.1039/c9ra02384d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Due to the enhanced electromagnetic field at the tips of metal nanoparticles, the spiked structure of gold nanostars (AuNSs) is promising for surface-enhanced Raman scattering (SERS). Therefore, the challenge is the synthesis of well designed particles with sharp tips. The influence of different surfactants, i.e., dioctyl sodium sulfosuccinate (AOT), sodium dodecyl sulfate (SDS), and benzylhexadecyldimethylammonium chloride (BDAC), as well as the combination of surfactant mixtures on the formation of nanostars in the presence of Ag+ ions and ascorbic acid was investigated. By varying the amount of BDAC in mixed micelles the core/spike-shell morphology of the resulting AuNSs can be tuned from small cores to large ones with sharp and large spikes. The concomitant red-shift in the absorption toward the NIR region without losing the SERS enhancement enables their use for biological applications and for time-resolved spectroscopic studies of chemical reactions, which require a permanent supply with a fresh and homogeneous solution. HRTEM micrographs and energy-dispersive X-ray (EDX) experiments allow us to verify the mechanism of nanostar formation according to the silver underpotential deposition on the spike surface in combination with micelle adsorption. Due to the enhanced electromagnetic field at the tips of metal nanoparticles, the spiked structure of gold nanostars (AuNSs) is promising for surface-enhanced Raman scattering (SERS).![]()
Collapse
Affiliation(s)
- Ferenc Liebig
- University of Potsdam
- Institute for Chemistry
- 14476 Potsdam
- Germany
| | - Ricky Henning
- University of Potsdam
- Institute for Chemistry
- 14476 Potsdam
- Germany
| | - Radwan M. Sarhan
- Institute for Physics
- 14476 Potsdam
- Germany
- Cairo University
- Chemistry Department
| | - Claudia Prietzel
- University of Potsdam
- Institute for Chemistry
- 14476 Potsdam
- Germany
| | | | | | - Joachim Koetz
- University of Potsdam
- Institute for Chemistry
- 14476 Potsdam
- Germany
| |
Collapse
|
19
|
Esquivel R, Canale I, Ramirez M, Hernández P, Zavala-Rivera P, Álvarez-Ramos E, Lucero-Acuña A. Poly(N-isopropylacrylamide)-coated gold nanorods mediated by thiolated chitosan layer: thermo-pH responsiveness and optical properties. E-POLYMERS 2018. [DOI: 10.1515/epoly-2017-0135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractA core-shell of colloidal metal-responsive polymer provides an innovative model in functional materials. These core-shell nanocomposites offer the possibility to control some properties, such as particle size, surface plasmon resonance and morphology. In this research, we demonstrate the successful synthesis and functionality of gold nanorods (GNR) coated with the polymers chitosan (Ch) and poly(N-isopropylacrylamide) (PNIPAM). The polymer coatings are performed using a two-step method. First, GNR were coated with a thiolated chitosan (GNR-Ch) by replacing hexadecyltrimethylammonium bromide with a chitosan thiomer. Structural modification of GNR-Ch was monitored by Fourier transform infrared spectroscopy. Then a second polymeric coating was done by in situ free radical polymerization of N-isopropylacrylamide (NIPAM) on GNR-Ch to obtain the nanocomposite GNR-Ch-PNIPAM. The nanocomposite average size was analyzed by dynamic light scattering. The evolution of ζ potentials during the coatings was measured using electrophoretic mobility. GNR-Ch-PNIPAM presented a collapsed structure when heated above the lower critical solution temperature. The particle size of GNR-Ch-PNIPAM was manipulated by changing the pH. Plasmonic properties were evaluated by UV-Vis spectroscopy. Results showed an important blue shift due to the PNIPAM coating thickness. Thermo- and pH-responsive properties of the nanocomposite GNR-Ch-PNIPAM could be used as a drug delivery system.
Collapse
Affiliation(s)
- Reynaldo Esquivel
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Hermosillo 83000, Mexico
- National Council of Science and Technology of Mexico, Ciudad de Mexico, 03940, Mexico
| | - Iván Canale
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Hermosillo 83000, Mexico
| | - Maricela Ramirez
- General Hospital, National Medical Center “La Raza”, Mexican Social Security Institute, Mexico City, Mexico
| | - Pedro Hernández
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Hermosillo 83000, Mexico
| | - Paul Zavala-Rivera
- Department of Chemical and Metallurgical Engineering, University of Sonora, Hermosillo 83000, Mexico, Tel.: +52-662-259-2105
| | - Enrique Álvarez-Ramos
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Hermosillo 83000, Mexico
| | - Armando Lucero-Acuña
- Department of Chemical and Metallurgical Engineering, University of Sonora, Hermosillo 83000, Mexico, Tel.: +52-662-259-2105
| |
Collapse
|
20
|
Bas SZ, Cummins C, Borah D, Ozmen M, Morris MA. Electrochemical Sensing of Hydrogen Peroxide Using Block Copolymer Templated Iron Oxide Nanopatterns. Anal Chem 2017; 90:1122-1128. [PMID: 29227090 DOI: 10.1021/acs.analchem.7b03244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new enzyme-free sensor based on iron oxide (Fe3O4) nanodots fabricated on an indium tin oxide (ITO) substrate via a block copolymer template was developed for highly sensitive and selective detection of hydrogen peroxide (H2O2). The self-assembly-based process described here for Fe3O4 formation is a simple, cost-effective, and reproducible process. The H2O2 response of the fabricated electrodes was linear from 2.5 × 10-3 to 6.5 mM with a sensitivity of 191.6 μA mM-1cm-2 and a detection limit of 1.1 × 10-3 mM. The electrocatalytic activity of Fe3O4 nanodots toward the electroreduction of H2O2 was described by cyclic voltammetric and amperometric techniques. The sensor described here has a strong anti-interference ability to a variety of common biological and inorganic substances.
Collapse
Affiliation(s)
- Salih Z Bas
- Department of Chemistry, Selcuk University , 42075 Konya, Turkey
| | - Cian Cummins
- AMBER Centre and CRANN, Trinity College Dublin , Dublin 2, Ireland
| | - Dipu Borah
- AMBER Centre and CRANN, Trinity College Dublin , Dublin 2, Ireland
| | - Mustafa Ozmen
- Department of Chemistry, Selcuk University , 42075 Konya, Turkey
| | - Michael A Morris
- AMBER Centre and CRANN, Trinity College Dublin , Dublin 2, Ireland
| |
Collapse
|
21
|
A nanobiosensor composed of Exfoliated Graphene Oxide and Gold Nano-Urchins, for detection of GMO products. Biosens Bioelectron 2017; 95:72-80. [DOI: 10.1016/j.bios.2017.02.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 01/14/2023]
|
22
|
Tian H, Fan H, Ma J, Ma L, Dong G. Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.083] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Olenin AY. Methods of nonenzymatic determination of hydrogen peroxide and related reactive oxygen species. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817030108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Dhara K, Ramachandran T, Nair BG, Satheesh Babu T. Au nanoparticles decorated reduced graphene oxide for the fabrication of disposable nonenzymatic hydrogen peroxide sensor. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Electroless deposition of Gold-Platinum Core@Shell Nanoparticles on Glassy Carbon Electrode for Non-Enzymatic Hydrogen Peroxide sensing#. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1038-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Gold nanostars: Benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity. J Colloid Interface Sci 2016; 462:341-50. [DOI: 10.1016/j.jcis.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 11/23/2022]
|
27
|
Gharatape A, Davaran S, Salehi R, Hamishehkar H. Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv 2016. [DOI: 10.1039/c6ra18760a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticle mediated photothermal therapy in future medicine.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Soodabeh Davaran
- Drug Applied Research Center and Department of Medicinal Chemistry
- Faculty of Pharmacy
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Roya Salehi
- Research Center for Pharmaceutical Nanotechnology and Department of Medical Nanotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center
- Tabriz University of Medical Science
- Tabriz
- Iran
| |
Collapse
|
28
|
Wang S, Qin Y, Zou Z. Determination of Liver Cancer Biomarkers by Surface-Enhanced Raman Scattering Using Gold-Silica Nanoparticles. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1098656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Tao L, Lu W, Wang M, Wang Y, Dong J, Qian W. Synthesis and Characterization of Silver Nanoparticle Modified 3-Aminophenol Resin Microspheres with Application for Determination of Carcinoembryonic Antigens by Surface-Enhanced Raman Scattering. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1027899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Li J, Cai R, Kawazoe N, Chen G. Facile preparation of albumin-stabilized gold nanostars for the targeted photothermal ablation of cancer cells. J Mater Chem B 2015; 3:5806-5814. [DOI: 10.1039/c5tb00633c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BSA–FA conjugation was used as a stabilizer to synthesize gold nanostars (BSA–FA–AuNSs). The prepared BSA–FA–AuNSs should have a great potential as photothermal conversion agents for the receptor-mediated treatment of cancer cells.
Collapse
Affiliation(s)
- Jingchao Li
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Rong Cai
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Naoki Kawazoe
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Guoping Chen
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| |
Collapse
|
31
|
Pallavicini P, Cabrini E, Borzenkov M. Gold Nanostar Synthesis and Functionalization with Organic Molecules. GOLD NANOSTARS 2015. [DOI: 10.1007/978-3-319-20768-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Li H, Li Y, Wang S. Water-soluble Au nanocages for enzyme-free H2O2sensor and 4-nitrophenol reduction. CrystEngComm 2015. [DOI: 10.1039/c4ce02455a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Ndokoye P, Ke J, Liu J, Zhao Q, Li X. L-cysteine-modified gold nanostars for SERS-based copper ions detection in aqueous media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13491-13497. [PMID: 25338810 DOI: 10.1021/la503553y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gold nanostars coated with cysteine (Cys-AuNSs) were successfully synthesized and used in SERS-based copper ions (Cu(2+)) detection in aqueous media. The strong coordination ability of cysteine (Cys) with Cu(2+) and the resulting Cys-AuNSs-Cu complex formation led to AuNSs aggregation and the drastic change in intensity and strength of COOH band spectra. The aggregation of AuNSs yielded distinct SERS signals, which exhibited remarkable sensitivity and selectivity for Cu(2+) over other metal ions. Using this SERS-based sensing method, we have achieved a practical detection limit of 10 μM. Such AuNSs-based detection could provide promising alternative choices for future SERS-active AuNSs application.
Collapse
Affiliation(s)
- Pancras Ndokoye
- Key Laboratory of Industrial Ecology and Environmental Engineering, Key Laboratory of Fine Chemicals, School of Environmental Sciences and Technology, Dalian University of Technology , Dalian 116024, People's Republic of China
| | | | | | | | | |
Collapse
|
34
|
Jiang D, Zhang Y, Huang M, Liu J, Wan J, Chu H, Chen M. Carbon nanodots as reductant and stabilizer for one-pot sonochemical synthesis of amorphous carbon-supported silver nanoparticles for electrochemical nonenzymatic H2O2 sensing. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|