1
|
Sun J, Hu G, Jiang L, Chang W, An S, Qi B, Song YF. Engineering Chiral Confinement Environment in Polyoxometalate Intercalated Graphene Oxide Sensor for Electrochemical Enantioselective Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410895. [PMID: 40178004 DOI: 10.1002/smll.202410895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/26/2025] [Indexed: 04/05/2025]
Abstract
The electrochemistry recognition of enantiomeric chiral molecules holds great significance for the pharmaceutical industry and scientific research. However, enhancing sensitivity and selectivity simultaneously, and elucidating chiral recognition mechanism, are two primary challenges. Here, an electrochemical chiral sensor L-C4-PMoV/GO is developed by confining chiral imidazole cations (L-C4) and [PMo10V2]5- (PMoV) signal anions within the interlayer of graphene oxide (GO). The L-C4-PMoV/GO is highly sensitive to recognition towards the chiral drug Levodopa (L-DOPA), which exhibits 16 times higher than the L-C4/GO. In addition, the enantioselectivity of ΔS = 19.92 is achieved. Mechanism studies suggest that the chiral confinement effect plays a crucial role in the synergism between the signal site PMoV and the enantioselectivity L-C4. In the chiral-confined microenvironment, the chiral induction from L-C4 to PMoV is facilitated, which results in the distortion of Mo (V)─O bonds. The hydrogen-bonding networks among the L-C4, Mo (V)─O, and DOPA generate the adsorption energy difference between the L/D-DOPA, as revealed by the in situ Raman spectroscopy and theoretical calculation. Compared to the conventional techniques, the electrochemical sensor shows comparable enantiomer excess (ee) value determination, low limits of detection (LOD) (6.7 nm for L-DOPA, 50.6 nm for D-DOPA), and portability, enabling practical chiral recognition.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guicong Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Luran Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wen Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sai An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bo Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| |
Collapse
|
2
|
Yekke-Ghasemi Z, Heravi MM, Malmir M, Mirzaei M. Efficient oxidation of sulfides to sulfoxides catalyzed by heterogeneous Zr-containing polyoxometalate grafted on graphene oxide. Sci Rep 2023; 13:16752. [PMID: 37798421 PMCID: PMC10556038 DOI: 10.1038/s41598-023-43985-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023] Open
Abstract
In this study, a tri-component composite named Zr/SiW12/GO was meticulously prepared through an ultrasonic-assisted method. This composite incorporates zirconium nanoparticles (Lewis acid), a negatively charged Keggin type polyoxometalate, and graphene oxide, and serves as a remarkable heterogeneous catalyst. The Keggin component plays multiple roles as reducing, encapsulating, and bridging agents, resulting in a cooperative effect among the three components that significantly enhances the catalytic activity. The catalytic performance of Zr/SiW12/GO was thoroughly investigated in the oxidation of sulfides to sulfoxides under mild conditions, employing H2O2 as the oxidant. Remarkably, this composite exhibited exceptional stability and could be effortlessly recovered and reused up to four times without any noticeable loss in its catalytic activity.
Collapse
Affiliation(s)
- Zahra Yekke-Ghasemi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Majid M Heravi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran.
| | - Masoume Malmir
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
- Khorasan Science and Technology Park (KSTP), 12Th Km of Mashhad-Quchan Road, MashhadKhorasan Razavi, 9185173911, Iran.
| |
Collapse
|
3
|
Bazargan M, Mirzaei M, Amiri A, Mague JT. Opioid Drug Detection in Hair Samples Using Polyoxometalate-Based Frameworks. Inorg Chem 2023; 62:56-65. [PMID: 36576501 DOI: 10.1021/acs.inorgchem.2c02658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of two-dimensional (2D) polyoxometalate-based frameworks, [Ln3(PDA)3(H2O)6(PMo12O40)]·xH2O (Ln = La (1); Ce (2); Pr (3); Nd (4); PDA = 1,10-phenanthroline-2,9-dicarboxylate), have been synthesized and structurally characterized by various analytical techniques. Single-crystal X-ray diffraction reveals that 1-4 have a unique 2D layer structure in which Keggin anions have coordinated upward and downward the plane, and this feature makes them suitable candidates for surface binding of common drugs via supramolecular and electrostatic interactions. Also, the ability of 1-4 (as the first polyoxomolybdate-containing frameworks) as sorbents for the extraction and quantitative determination of opioid drugs (morphine, methadone, and pethidine) was investigated by using dispersive micro-solid-phase extraction (D-μSPE) and high-performance liquid chromatography (HPLC). The method showed wide linear ranges in the range of 0.3 to 300 ng mg-1 and low limits of detection (LODs) ranged from 0.1 to 0.2 ng mg-1 of hair.
Collapse
Affiliation(s)
- Maryam Bazargan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.,Khorasan Science and Technology Park (KSTP), 12th km of Mashhad-Quchan Road, Mashhad, Khorasan Razavi 9185173911, Iran
| | - Amirhassan Amiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
4
|
Li J, Song N, Wang M, Zhang Z, Li Y, Chen L, Zhao J. Two Types of Subgroup-Valence Heteroatoms (P III, Te IV) Synergistically Controlling Octa-Ce III-Encapsulated Heteropolyoxotungstate and Its Electrochemical Recognition Properties. Inorg Chem 2022; 61:17166-17177. [PMID: 36240053 DOI: 10.1021/acs.inorgchem.2c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid development of the synthetic chemistry of polyoxometalates (POMs) has greatly driven the generation of structurally variable innovative POM-based materials. Herein, we synthesized a novel PIII and TeIV synergistically controlling octa-CeIII-encapsulated heteropolyoxotungstate [H2N(CH3)2]11K2Na6H11[Ce8(CH3COO)2(HPIIIO3)2W8O20(H2O)12(B-β-TeW8O30)2(B-α-TeW8O31)4]·64H2O (1). Its distinctive anion skeleton [Ce8(CH3COO)2(HPIIIO3)2W8O20(H2O)12(B-β-TeW8O30)2(B-α-TeW8O31)4]30- is built by two tetra-vacancy [B-β-TeW8O30]8- and four tetra-vacancy [B-α-TeW8O31]10- moieties linked through an inorganic-organic hybrid [Ce8(CH3COO)2(HPIIIO3)2W8O20(H2O)12]26+ {Ce8P2W8} cluster core. Interestingly, {Ce8P2W8} is assembled from four [W2O11]10- groups and two [HPIIIO3]2- anions and eight Ce3+ ions. Besides, 1 was further composited with carboxylated multiwalled carbon nanotube (CMCN), resulting in a bi-component 1/CMCN nanocomposite. An electrochemical recognition platform (named as 1/CMCN/GCE) was built by modifying 1/CMCN on a glassy carbon electrode (GCE) for electrochemical detection of dopamine (DPA) at physiological pH (pH = 7.0). The findings have shown that 1/CMCN/GCE exhibits a good detection limit of 4.95 nM for DPA. This work provides considerable inspiration to promote innovative and rational structure designs of POM-based materials and expand their applications to electrochemical and biological detection fields.
Collapse
Affiliation(s)
- Juan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Nizi Song
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Menglu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Zhimin Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
5
|
Belay Y, Muller A, Mallick K. Lanthanide Formate Coordination Polymers for Selective Detection of Dopamine in the Presence of Ascorbic Acid. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Ding X, Cai S, Chen X, Wang L, Hong C, Liu G. Fabrication and Electrochemical Study of [(2,2′-bipy/P2Mo18)10] Multilayer Composite Film Modified Electrode for Electrocatalytic Detection of Tyrosinase in Penaeus vannamei. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Lanthanoid-containing polyoxometalate nanocatalysts in the synthesis of bioactive isatin-based compounds. Sci Rep 2022; 12:12004. [PMID: 35835941 PMCID: PMC9283471 DOI: 10.1038/s41598-022-16384-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Lanthanoid-containing polyoxometalates (Ln-POMs) have been developed as effective and robust catalysts due to their Lewis acid–base active sites including the oxygen-enriched surfaces of POM and the unique 4f. electron configuration of Ln. As an extension of our interest in Ln-POMs, a series of as-synthesized nanocatalysts K15[Ln(BW11O39)2] (Ln-B2W22, Ln = La, Ce, Nd, Sm, Gd, and Er) synthesized and fully characterized using different techniques. The Ln3+ ion with a big ionic radius was chosen as the Lewis acid center which is sandwiched by two mono-lacunary Keggin [BW11O39]9− units to form Ln-containing sandwiched type cluster. Consequently, the catalytic activity of nanocatalysts with different Ln was examined in the synthesis of bioactive isatin derivatives and compared under the same optimized reaction conditions in terms of yields of obtained products, indicating the superiority of the nano-Gd-B2W22 in the aforementioned simple one-pot reaction. The effects of different dosages of nanocatalyst, type of solvent, reaction time, and reaction temperature in this catalytic system were investigated and the best results were obtained in the presence of 10 mol% of nano-Gd-B2W22 in water for 12 min at the reflux condition.
Collapse
|
8
|
Yekke-Ghasemi Z, Heravi MM, Malmir M, Jahani G, Bisafar MB, Mirzaei M. Fabrication of heterogeneous-based lacunary polyoxometalates as efficient catalysts for the multicomponent and clean synthesis of pyrazolopyranopyrimidines. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Chen S, Chen W, Wang Y, Wang X, Ding Y, Zhao D, Liu J. Facile one-pot method of AuNPs/PEDOT/CNT composites for simultaneous detection of dopamine with a high concentration of ascorbic acid and uric acid. RSC Adv 2022; 12:15038-15045. [PMID: 35702427 PMCID: PMC9115873 DOI: 10.1039/d2ra01262f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
In this research, a facile one-pot method was used to synthesize gold/poly-3,4-ethylene-dioxythiophene/carbon nanotube (AuNPs/PEDOT/CNTs) composite material. The composite material was investigated by Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Then the synthesized nanocomposite material was dropped on a bare glassy carbon electrode (GCE) to improve the detection performance of dopamine with a high concentration of ascorbic acid and uric acid. The electrochemical behavior of AuNPs/PEDOT/CNTs/GCE was studied by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, AuNPs/PEDOT/CNTs/GCE showed a good linear response in the concentration range from 9.14 to 29.704 μM with a detection limit (LOD) and sensitivity of 0.283 μM and 1.557 μA μM-1, respectively. This sensor was applied to detect practical samples with good average recovery. It also exhibited good reproducibility and stability.
Collapse
Affiliation(s)
- Shaohua Chen
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Wenliang Chen
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Yihua Wang
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Xiufang Wang
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Yi Ding
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Donglin Zhao
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| | - Jiyu Liu
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University Hefei 230022 Anhui Province P. R. China
| |
Collapse
|
10
|
A unique organic-inorganic hybrid FeIII–PrIII-included 2-germano-20-tungstate and its electrochemical biosensing properties. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Veríssimo MIS, Evtuguin DV, Gomes MTSR. Polyoxometalate Functionalized Sensors: A Review. Front Chem 2022; 10:840657. [PMID: 35372262 PMCID: PMC8964365 DOI: 10.3389/fchem.2022.840657] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Polyoxometalates (POMs) are a class of metal oxide complexes with a large structural diversity. Effective control of the final chemical and physical properties of POMs could be provided by fine-tuning chemical modifications, such as the inclusion of other metals or non-metal ions. In addition, the nature and type of the counterion can also impact POM properties, like solubility. Besides, POMs may combine with carbon materials as graphene oxide, reduced graphene oxide or carbon nanotubes to enhance electronic conductivity, with noble metal nanoparticles to increase catalytic and functional sites, be introduced into metal-organic frameworks to increase surface area and expose more active sites, and embedded into conducting polymers. The possibility to design POMs to match properties adequate for specific sensing applications turns them into highly desirable chemicals for sensor sensitive layers. This review intends to provide an overview of POM structures used in sensors (electrochemical, optical, and piezoelectric), highlighting their main functional features. Furthermore, this review aims to summarize the reported applications of POMs in sensors for detecting and determining analytes in different matrices, many of them with biochemical and clinical relevance, along with analytical figures of merit and main virtues and problems of such devices. Special emphasis is given to the stability of POMs sensitive layers, detection limits, selectivity, the pH working range and throughput.
Collapse
Affiliation(s)
- Marta I. S. Veríssimo
- CESAM, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- *Correspondence: Marta I. S. Veríssimo, ; M. Teresa S. R. Gomes,
| | | | - M. Teresa S. R. Gomes
- CESAM, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- *Correspondence: Marta I. S. Veríssimo, ; M. Teresa S. R. Gomes,
| |
Collapse
|
12
|
Trimetallic Ag@Pt-Rh core-shell nanocubes modified anode for voltammetric sensing of dopamine and sulfanilamide. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Chen Y, Li F, Li S, Zhang L, Sun M. A review of application and prospect for polyoxometalate-based composites in electrochemical sensor. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Babaei Zarch M, Mirzaei M, Bazargan M, Gupta SK, Meyer F, Mague JT. Single-molecule magnets within polyoxometalate-based frameworks. Dalton Trans 2021; 50:15047-15056. [PMID: 34610055 DOI: 10.1039/d1dt01708j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an extension of our interest in polyoxometalates (POMs) and lanthanoids, we report the design and synthesis of two polyoxometalate-based frameworks under hydrothermal conditions; [Ho4(PDA)4(H2O)11][(SiO4)@W12O36]·8H2O (1) and [Tb4(PDA)4(H2O)12][(SiO4)@W12O36]·4H2O (2) (H2PDA = 1,10-phenanthroline-2,9-dicarboxylic acid). Both hybrids have been characterized by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, and powder/single-crystal X-ray diffraction. According to the structural analysis, 1 and 2 consist of 2D-cationic coordination polymers based on the respective lanthanoids and PDA2- as well as Keggin anions that reside in the interspaces between two adjacent layers as discrete counterions connected by extensive hydrogen bonding. Although the overall structures of 1 and 2 are composed of cationic and anionic layers, there are many differences in the cationic layers such as various coordination modes of PDA2-, different void shapes, and the existence of dinuclear Tb(III) units only in 2. Frameworks 1 and 2 were further characterized by dc and ac magnetic measurements and both exhibit slow relaxation of magnetization at low temperatures under an applied dc field. Their single-molecule magnet (SMM) properties are investigated, where weak field-induced SMM behaviour is observed at low temperatures in dynamic magnetic studies.
Collapse
Affiliation(s)
- Malihe Babaei Zarch
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Maryam Bazargan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Sandeep K Gupta
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| |
Collapse
|
15
|
Bazargan M, Ghaemi F, Amiri A, Mirzaei M. Metal–organic framework-based sorbents in analytical sample preparation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214107] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Hassanpour A, Zamanfar M, Ebrahimiasl S, Ebadi A, Liu P. Dopamine Drug Adsorption on the Aluminum Nitride Single-Wall Nanotube: Ab initio Study. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05678-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Rajeev R, Datta R, Varghese A, Sudhakar Y, George L. Recent advances in bimetallic based nanostructures: Synthesis and electrochemical sensing applications. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105910] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Amiri M, Akbari Javar H, Mahmoudi‐Moghaddam H. Facile Green Synthesis of NiO/NiCo
2
O
4
Nanocomposite as an Efficient Electrochemical Platform for Determination of Dopamine. ELECTROANAL 2021. [DOI: 10.1002/elan.202060489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahnaz Amiri
- Neuroscience Research Center Institute of Neuropharmacology Kerman University of Medical Science Kerman Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center Kerman University of Medical Science Kerman Iran
| | - Hamid Akbari Javar
- Pharmaceutics Department Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Hadi Mahmoudi‐Moghaddam
- Pharmaceutical Sciences and Cosmetic Products Research Center Kerman University of Medical Sciences Kerman Iran
- Environmental Health Engineering Research Center Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
19
|
Abstract
Polyoxometalates (POMs) have been used for spectrophotometric determinations of silicon and phosphorus under acidic conditions, referred to as the molybdenum yellow method and molybdenum blue method, respectively. Many POMs are redox active and exhibit fascinating but complicated voltammetric responses. These compounds can reversibly accommodate and release many electrons without exhibiting structural changes, implying that POMs can function as excellent mediators and can be applied to sensitive determination methods based on catalytic electrochemical reactions. In addition, some rare-earth-metal-incorporated POMs exhibit fluorescence, which enables sensitive determination by the enhancement and quenching of fluorescence intensities. In this review, various analytical applications of POMs are introduced, mainly focusing on papers published after 2000, except for the molybdenum yellow method and molybdenum blue method.
Collapse
Affiliation(s)
- Tadaharu Ueda
- Department of Marine Resource Science Faculty of Agriculture and Marine Science, Kochi University, Nankoku, 783-8502, Japan. .,Center for Advanced Marine Core Research, Kochi University, Nankoku, 783-8502, Japan.
| |
Collapse
|
20
|
Wu KY, Chen M, Huang NH, Li RT, Pan WL, Zhang WH, Chen WH, Chen JX. Facile and recyclable dopamine sensing by a label-free terbium(III) metal-organic framework. Talanta 2021; 221:121399. [PMID: 33076054 DOI: 10.1016/j.talanta.2020.121399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022]
Abstract
Herein, we present a facile strategy for dopamine (DA) sensing by a water-stable MOF of {[Tb(Cmdcp)(H2O)3]2(NO3)2·5H2O}n (1, H3CmdcpBr = N-carboxymethyl-(3,5-dicarboxyl)pyridinium bromide). Without any post-modification, MOF 1 functions as an effective fluorescent sensor for the label-free detection of DA with the detection limit of 0.41 μM (S/N = 3). Under the optimum condition of 80 °C, pH 9 for 80 min in Tris-HCl with natural ambient oxygen, DA polymerizes to give polydopamine (pDA), which adheres to the surface of MOF 1 and quenched its green luminescence thoroughly. The sensing process is visible to naked eyes under 365 nm UV light irradiation due to the partial overlap of its excitation spectrum with the absorption spectrum of pDA. The sensing process is not interfered by coexisting of bio-related organic substances, such as glucose (Glu), 5-hydroxytryptamine (5-HT), homocysteine (Hcy), ascorbic acid (AA), uric acid (UA), cysteine (Cys), glutathione (GSH), as well as the presence of metal ions, including Zn2+, Ca2+, Mg2+, Ni2+ and Co2+. The sensing process is also adaptable in biological fluids of serum and urine with satisfactory recoveries ranging from 96.14% to 104.32%.
Collapse
Affiliation(s)
- Ke-Yang Wu
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ming Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Nai-Hai Huang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Rong-Tian Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wei-Lun Pan
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen, 529040, Guangdong, China
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
21
|
Lai SY, Ng KH, Cheng CK, Nur H, Nurhadi M, Arumugam M. Photocatalytic remediation of organic waste over Keggin-based polyoxometalate materials: A review. CHEMOSPHERE 2021; 263:128244. [PMID: 33297191 DOI: 10.1016/j.chemosphere.2020.128244] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/17/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Photocatalytic remediation of industrial water pollution has courted intense attention lately due to its touted green approach. In this respect, Keggin-based polyoxometalates (POMs) as green solid acids in photocatalytic reaction possess superior qualities, viz. unique photoinduced charge-transfer properties, strong photooxidative-photoreductive ability, high chemical and thermal stability, and so forth. Unfortunately, it suffers from a large bandgap energy, low specific surface area, low recoverability, and scarce utilization in narrow absorption range. Therefore, the pollutant degradation performance is not satisfactory. Consequently, multifarious research to enhance the photocatalytic performance of Keggin-based POMs were reported, viz. via novel modifications and functionalizations through a variety of materials, inclusive of, inter alia, metal oxides, transition metals, noble metals, and others. In order to advocate this emerging technology, current review work provides a systematic overview on recent advancement, initiated from the strategized synthetic methods, followed by hierarchical enhancement and intensification process, at the same time emphasizes on the fundamental working principles of Keggin-based POM nanocomposites. By reviewing and summarizing the efforts adopted global-wide, this review is ended with providing useful outlooks for future studies. It is also anticipated to shed light on producing Keggin-based POM nanocomposites with breakthrough visible- and solar-light-driven photocatalytic performance against recalcitrant organic waste.
Collapse
Affiliation(s)
- Sin Yuan Lai
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Kim Hoong Ng
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, PR China; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Hadi Nur
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM, Skudai, Johor, 81310, Malaysia; Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang, 65145, Indonesia
| | - Mukhamad Nurhadi
- Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia
| | - Mahashanon Arumugam
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Department of Petroleum Technology and Alternative Fuels, Faculty of Environmental Technology, UCT, Prague, Technická 5, 160 00, Praha 6-Dejvice, Czechia
| |
Collapse
|
22
|
Dang C, Peng MYP, Huo Z, Wu L. Defective boron carbide monolayer as a chemical sensor for dopamine drug. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Construction of an ultra-sensitive electrochemical sensor based on polyoxometalates decorated with CNTs and AuCo nanoparticles for the voltammetric simultaneous determination of dopamine and uric acid. Mikrochim Acta 2020; 187:483. [DOI: 10.1007/s00604-020-04446-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/08/2020] [Indexed: 02/03/2023]
|
24
|
Bao Y, Li Z, Wang H, Li N, Pan Q, Li J, Zhao J, Yang R, Feng F. Electrochemical Reduction-Assisted In Situ Fabrication of a Graphene/Au Nanoparticles@polyoxometalate Nanohybrid Film: High-Performance Electrochemical Detection for Uric Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7365-7374. [PMID: 32476427 DOI: 10.1021/acs.langmuir.0c00893] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanohybrid films had attracted much attention owning to the enhancement of catalytic activity. However, the fabrication time took hours to days, no matter if it was the preparation of nanohybrids or the assembly process. Furthermore, the catalytic efficiency of the nanohybrid film still remained to improve. In this paper, a reduced graphene oxide (rGO)/gold nanoparticles (Au NPs)@polyoxometalate (POM) nanohybrid film was successfully fabricated by combining electrodeposition and electrochemical reduction in situ processes. The assembly process involving no organic or polymer linker molecules [except for a precursor poly(ethylenimine) (PEI) coating for indium tin oxide (ITO)] can be completed within 1 h. The reduced POM K6[P2W18O62]·19H2O (P2W18) was employed as reducing agents and bridging molecules for rGO and Au nanoparticles and the encapsulating molecules for the Au nanoparticles. The most interesting one is the {rGO/Au@P2W18} modified electrode loading only the monolayer catalyst of Au@P2W18 and exhibiting comparable, even better electrochemical detection performance toward uric acid than other sensors with three to eight layers of the catalyst. The amperometric detection displayed a great sensitivity, lower detection limit, wide linear range, good long-time stability, superior selectivity, and reproducibility. The enhanced catalytic property may attribute to the improved conductivity of the film without organic or polymer linker molecules (except for a precursor PEI coating) and the electron transfer in the process of film fabrication.
Collapse
Affiliation(s)
- Yayan Bao
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, P. R. China
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Zuopeng Li
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Haiyan Wang
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Ning Li
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Qiliang Pan
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Jiang Li
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Jianguo Zhao
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Feng Feng
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, P. R. China
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| |
Collapse
|
25
|
Ding W, Zhang X, Wu YL, Wu L. Graphene-like boron carbide monolayer as an electronic and work function-type sensor for dopamine drug. J Mol Graph Model 2020; 99:107644. [PMID: 32619954 DOI: 10.1016/j.jmgm.2020.107644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/26/2022]
Abstract
The electronic response of both pristine and Al-doped BC3 nanosheets toward 3, 4-dihydroxyphenyl ethylamine, i.e. dopamine (DA) was studied through density functional theory. Based on the adsorption energy the tendency of pristine BC3 toward DA drug insignificant and also after adsorption of DA drug the electronic properties of BC3 were changed negligibly. While doping the sheet by Al significantly increases its reactivity and sensitivity toward the DA drug. By adsorption of DA HOMO-LUMO gap dramatically decreased of from 1.34 to 1.12 eV, thereby enhancing the electrical conductivity. It indicates that the doped BC3 nanosheets may be a suitable candidate as a DA electronic sensor, unlike the pristine BC3. Furthermore, the work function of doped BC3 was changed significantly after DA adsorption. Based on these results the doped BC3 can also act as a work function-type sensor to the sensing of DA was used. Finally, the most important factor of the doped BC3 sheet is a short recovery time of 7.36 ms for the desorption process of DA.
Collapse
Affiliation(s)
- Wenya Ding
- School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiao Zhang
- School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Yu Long Wu
- School of Material Science and Engineering, Southeast University, Nanjing, 210009, China
| | - Liang Wu
- College of Science, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
26
|
Ko M, Mendecki L, Eagleton AM, Durbin CG, Stolz RM, Meng Z, Mirica KA. Employing Conductive Metal-Organic Frameworks for Voltammetric Detection of Neurochemicals. J Am Chem Soc 2020; 142:11717-11733. [PMID: 32155057 DOI: 10.1021/jacs.9b13402] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal-organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multianalyte solution. The device configuration comprises a glassy carbon electrode modified with a film of conductive MOF (M3HXTP2; M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaiminotriphenylene (HITP) or O, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP)). The utility of 2D MOFs in voltammetric sensing is measured by the detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and serotonin (5-HT) in 0.1 M PBS (pH = 7.4). In particular, Ni3HHTP2 MOFs demonstrated nanomolar detection limits of 63 ± 11 nM for DA and 40 ± 17 nM for 5-HT through a wide concentration range (40 nM-200 μM). The applicability in biologically relevant detection was further demonstrated in simulated urine using Ni3HHTP2 MOFs for the detection of 5-HT with a nanomolar detection limit of 63 ± 11 nM for 5-HT through a wide concentration range (63 nM-200 μM) in the presence of a constant background of DA. The implementation of conductive MOFs in voltammetric detection holds promise for further development of highly modular, sensitive, selective, and stable electroanalytical devices.
Collapse
Affiliation(s)
- Michael Ko
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Aileen M Eagleton
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Claudia G Durbin
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
27
|
Schreiber E, Petel BE, Matson EM. Acid-Induced, Oxygen-Atom Defect Formation in Reduced Polyoxovanadate-Alkoxide Clusters. J Am Chem Soc 2020; 142:9915-9919. [PMID: 32433883 DOI: 10.1021/jacs.0c03864] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we present the first example of acid-induced, oxygen-atom abstraction from the surface of a polyoxometalate cluster. Generation of the oxygen-deficient vanadium oxide, [V6O6(OC2H5)12]1-, was confirmed via independent synthesis. Spectroscopic analysis using infrared and electronic absorption spectroscopies affords resolution of the electronic structure of the oxygen-deficient cluster (oxidation state distribution = [VIIIVIV5]). This work has direct implications toward the elucidation of possible mechanisms of acid-assisted vacancy formation in bulk transition metal oxides, in particular electron-proton codoping that has recently been described for vanadium oxide (VO2). Ultimately, these molecular models deepen our understanding of proton-dependent redox chemistry of transition metal oxide surfaces.
Collapse
Affiliation(s)
- Eric Schreiber
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Brittney E Petel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
28
|
He S, Hu A, Zhuang Q, Peng H, Deng H, Chen W, Hong G. Ascorbate Oxidase Mimetic Activity of Copper(II) Oxide Nanoparticles. Chembiochem 2020; 21:978-984. [PMID: 31657085 DOI: 10.1002/cbic.201900595] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Shao‐Bin He
- Department of Pharmaceutical AnalysisFujian Medical University Fuzhou 350004 P. R. China
| | - Ai‐Ling Hu
- Department of Pharmaceutical AnalysisFujian Medical University Fuzhou 350004 P. R. China
- Department of PharmacyFirst Hospital of Qinhuangdao Qinhuangdao 066000 P. R. China
| | - Quan‐Quan Zhuang
- Department of Pharmaceutical AnalysisFujian Medical University Fuzhou 350004 P. R. China
| | - Hua‐Ping Peng
- Department of Pharmaceutical AnalysisFujian Medical University Fuzhou 350004 P. R. China
| | - Hao‐Hua Deng
- Department of Pharmaceutical AnalysisFujian Medical University Fuzhou 350004 P. R. China
| | - Wei Chen
- Department of Pharmaceutical AnalysisFujian Medical University Fuzhou 350004 P. R. China
| | - Guo‐Lin Hong
- Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University Xiamen 361003 P. R. China
| |
Collapse
|
29
|
Wang D, Liu L, Jiang J, Chen L, Zhao J. Polyoxometalate-based composite materials in electrochemistry: state-of-the-art progress and future outlook. NANOSCALE 2020; 12:5705-5718. [PMID: 32104820 DOI: 10.1039/c9nr10573e] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polyoxometalates (POMs) have been developed as a class of promising smart material candidates not only due to their multitudinous architectures but also their good redox activities and outstanding electron and proton transport capacities. Recently, abundant studies on POMs composited with metal nanoparticles (NPs), carbon materials (e.g., carbon nanotubes (CNTs), carbon quantum dots (CQDs), graphene), and conducting polymers or highly-porous framework materials (e.g., MOFs, ZIFs) have been performed and POM-based composite materials (PCMs) undoubtedly show enhanced stability and improved electrochemical performances. Therefore, POMs and PCMs are of increasing interest in electrocatalysis, electrochemical detection and energy-related fields (such as fuel cells, redox flow batteries and so on), thus, developing novel PCMs has long been the key research topic in POM chemistry. This review mainly summarizes some representative advances in PCMs with electrochemical applications in the past ten years, expecting to provide some useful guidance for future research.
Collapse
Affiliation(s)
- Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
30
|
Zhou K, Shen D, Li X, Chen Y, Hou L, Zhang Y, Sha J. Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine. Talanta 2020; 209:120507. [DOI: 10.1016/j.talanta.2019.120507] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/11/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
|
31
|
Fu Z, Qu Z, Yu T, Bi L. Study on electrochromic-fluorescence switching performance of film based on silicomolybdotungstate and silica nanoparticles doped with negative charged dye. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Dhara K, Debiprosad RM. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal Biochem 2019; 586:113415. [DOI: 10.1016/j.ab.2019.113415] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
|
33
|
Thamilselvan A, Manivel P, Rajagopal V, Nesakumar N, Suryanarayanan V. Improved electrocatalytic activity of Au@Fe3O4 magnetic nanoparticles for sensitive dopamine detection. Colloids Surf B Biointerfaces 2019; 180:1-8. [DOI: 10.1016/j.colsurfb.2019.04.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 11/15/2022]
|
34
|
Iqbal A, Asif HM, Zhou Y, Zhang L, Wang T, Khurum Shehzad F, Ren X. From Simplicity to Complexity in Grafting Dawson-Type Polyoxometalates on Porphyrin, Leading to the Formation of New Organic-Inorganic Hybrids for the Investigation of Third-Order Optical Nonlinearities. Inorg Chem 2019; 58:8763-8774. [PMID: 31247847 DOI: 10.1021/acs.inorgchem.9b01163] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four new organic-inorganic hybrids, [N(C4H9)4]5H[{HNC2O(CH2O)3P2V3W15O59}C44N4H29O3] (TPPOH-1POM), [N(C4H9)4]10H2[{HNC2O(CH2O)3P2V3W15O59}2C44N4H28O2] (TPPOH-2POM trans), [N(C4H9)4]10H2[{HNC2O(CH2O)3P2V3W15O59}2C44N4H28O2] (TPPOH-2POM cis), and [N(C4H9)4]15H3[{HNC2O(CH2O)3P2W15V3O59}3C44N4H27O] (TPPOH-3POM), have been synthesized by covalently grafting the Dawson-type polyoxometalate (POM) [N(C4H9)4]5[H4P2W15V3O62] onto new porphyrins N-[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]-4-[10,15,20-tris(4-hydroxyphenyl)porphyrin-5-yl]benzamide (TPPOH-1Tris), 4,4'-[5,15-bis(4-hydroxyphenyl)porphyrin-10,20-diyl]bis[ N-[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]benzamide] (TPPOH-2Tris trans), 4,4'-[10,15-bis(4-hydroxyphenyl)porphyrin-5,20-diyl]bis[ N-[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]benzamide] (TPPOH-2Tris cis). and 4,4',4″-[20-(4-hydroxyphenyl)porphyrin-5,10,15-triyl]tris[ N-[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]benzamide] (TPPOH-3Tris), respectively, in N, N-dimethylacetamide under nitrogen. The hybrid compounds were thoroughly characterized by elemental analysis, FT-IR, NMR (1H, 2D NOESY, 31P, and 51V), ESI-MS, MALDI-TOF-MS, UV-vis, and fluorescence spectroscopy. All porphyrins and their corresponding hybrids exhibited remarkable third-order nonlinear-optical responses under laser irradiation, with the intensity of light at focus E0 being 4.2 μJ at wavelength 532 nm, pulse duration τ = 6 ns, and repetition rate 10 Hz. The molecular second hyperpolarizability (γ) values of the hybrids (TPPOH-1POM, TPPOH-2POM trans, TPPOH-2POM cis, TPPOH-3POM) were calculated to be 8.48 × 10-28 esu, 8.94 × 10-28 esu, 10.16 × 10-28 esu, and 8.93 × 10-28 esu, while the molecular second hyperpolarizability (γ) of their corresponding porphyrin precursors (TPPOH-1Tris, TPPOH-2Tris trans, TPPOH-2Tris cis, and TPPOH-3Tris) were 7.19 × 10-28 esu, 8.09 × 10-28 esu, 9.07 × 10-28 esu, and 7.24 × 10-28 esu, respectively. The γ values of the cis forms were found to be superior to those of all other compounds, indicating the significant role of the greater dipole moment and low symmetry of the cis form compared to other compounds. It was also found that the fluorescence intensity was decreased by 81.52%, 90.37%, 93.93%, and 84.62% for the hybrids TPPOH-1POM, TPPOH-2POM trans, TPPOH-2POM cis, and TPPOH-3POM with respect to their corresponding precursors, respectively, which reveals the Dawson-type POM as a strong quencher. This quenching phenomenon not only indicates again unequivocally the formation of hybrid compounds but also may imply a photoinduced electron/energy-transfer process favored from a porphyrin moiety to a Dawson-type POM moiety.
Collapse
Affiliation(s)
- Arshad Iqbal
- State Key Laboratory of Chemical Resource Engineering, Institute of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Hafiz Muhammad Asif
- State Key Laboratory of Chemical Resource Engineering, Institute of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, Institute of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Ting Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Farooq Khurum Shehzad
- State Key Laboratory of Chemical Resource Engineering, Institute of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Xiaoyu Ren
- State Key Laboratory of Chemical Resource Engineering, Institute of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| |
Collapse
|
35
|
Mounesh, Jilani BS, Pari M, Reddy KV, Lokesh K. Simultaneous and sensitive detection of ascorbic acid in presence of dopamine using MWCNTs-decorated cobalt (II) phthalocyanine modified GCE. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Tyrosinase/Chitosan/Reduced Graphene Oxide Modified Screen-Printed Carbon Electrode for Sensitive and Interference-Free Detection of Dopamine. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tyrosinase, chitosan, and reduced graphene oxide (rGO) are sequentially used to modify a screen-printed carbon electrode (SPCE) for the detection of dopamine (DA), without interference from uric acid (UA) or ascorbic acid (AA). The use of tyrosinase significantly improves the detection’s specificity. Cyclic voltammetry (CV) measurements demonstrate the high sensitivity and selectivity of the proposed electrochemical sensors, with detection limits of 22 nM and broad linear ranges of 0.4–8 μM and 40–500 μM. The fabricated tyrosinase/chitosan/rGO/SPCE electrodes achieve satisfactory results when applied to human urine samples, thereby demonstrating their feasibility for analyzing DA in physiological samples.
Collapse
|
37
|
Li K, Han Y, Li J, Xing H, Chen L, Li G, Zhu X, Wang E. A Molybdenum Carbide Nanotubes Modified Electrode as the Functionalized Sensing Platform for Electrochemical Detection of Dopamine. ELECTROANAL 2019. [DOI: 10.1002/elan.201800679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ke Li
- Key Laboratory of Songliao Aquatic EnvironmentMinistry of EducationJilin Jianzhu University Changchun, Jilin 130118, PR China
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun, Jilin 130022, PR China
| | - Yanchao Han
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun, Jilin 130022, PR China
| | - Jing Li
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun, Jilin 130022, PR China
| | - Huanhuan Xing
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun, Jilin 130022, PR China
| | - Lei Chen
- Key Laboratory of Songliao Aquatic EnvironmentMinistry of EducationJilin Jianzhu University Changchun, Jilin 130118, PR China
| | - Guang Li
- Key Laboratory of Songliao Aquatic EnvironmentMinistry of EducationJilin Jianzhu University Changchun, Jilin 130118, PR China
| | - Xiaoqing Zhu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun, Jilin 130022, PR China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun, Jilin 130022, PR China
| |
Collapse
|
38
|
Bazargan M, Mirzaei M, Franconetti A, Frontera A. On the preferences of five-membered chelate rings in coordination chemistry: insights from the Cambridge Structural Database and theoretical calculations. Dalton Trans 2019; 48:5476-5490. [PMID: 30920565 DOI: 10.1039/c9dt00542k] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purpose of this review is to give an overview of three important N-bidentate ligands: 1,10-phenanthroline (phen), 2,2'-bipyridine (bpy), and ethylenediamine (en). We have not attempted to be comprehensive because of the huge amount of activity being done in coordination chemistry using these ligands. Instead we present a full structural and geometrical study by using the Cambridge Structural Database (CSD) combined with theoretical calculations that allow us to parameterize their coordinating properties and ability to coordinate to transition and non-transition metals. More importantly, we illustrate that upon coordination and formation of the five-membered chelate ring, these ligands are able to adapt themselves to the requirements of the different metals by changing the MN distances and NMN angles. Therefore, a redefinition of the preferences of these ligands to metals with large ionic radii is needed. Finally, we will present some facts about the participation of these ligands in inorganic-organic hybrids (IOHs) based on Keggin polyoxometalates (POMs).
Collapse
Affiliation(s)
- Maryam Bazargan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 917751436, Mashhad, Iran.
| | | | | | | |
Collapse
|
39
|
Demirkan B, Ay H, Karakuş S, Uzun G, Khan A, Şen F. Electrochemical Detection of Dopamine in the Presence of Uric Acid Using Graphene Oxide Modified Electrode as Highly Sensitive and Selective Sensors. CARBON NANOSTRUCTURES 2019. [DOI: 10.1007/978-981-32-9057-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Amini A, Rahimi M, Nazari M, Cheng C, Samali B. One-pot facile simultaneous in situ synthesis of conductive Ag–polyaniline composites using Keggin and Preyssler-type phosphotungstates. RSC Adv 2019; 9:2772-2783. [PMID: 35520511 PMCID: PMC9059952 DOI: 10.1039/c8ra09029g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/22/2018] [Indexed: 11/23/2022] Open
Abstract
Two heteropolytungstate structures, Keggin (H3PW12O40) and Preyssler (H14[NaP5W30O110]), were used to synthesize conductive silver nanoparticle–polyaniline–heteropolytungstate (AgNPs–PAni–HPW) nanocomposites. During the oxidative polymerization of aniline, heteropolyblue was generated and served as the reducing agent to stabilize and distribute AgNPs within “PAni–Keggin” and “PAni–Preyssler” matrixes as well as on their surfaces. The prepared nanocomposites and AgNPs were characterized using UV-visible (UV-Vis) and Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), pore size distribution BET, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). UV-Vis results showed different stages of the formation of metal NPs embedded in the polymer–HPW composites, and FT-IR spectra presented characteristic bands of PAni, Keggin and Preyssler anions in the composites confirming no changes in their structures. The presence of AgNPs and an intensely crystalline matrix were confirmed by the XRD pattern. The BET surface areas were found to be 38.426 m2 g−1 for “AgNPs–PAni–Keggin” and 29.977 m2 g−1 for “AgNPs–PAni–Preyssler” nanocomposites with broad distributions of meso-porous structure for both nanocomposites. TEM and SEM images confirmed that the type of heteropolyacids affected the size of AgNPs. This is the first report that uses Keggin and Preyssler-type heteropolytungstate to synthesize “AgNPs–PAni–HPW” nanocomposites in an ambient condition through a low-cost, facile, one-pot, environmentally friendly and simultaneous in situ oxidative polymerization protocol. Two heteropolytungstate structures, (a) Keggin (H3PW12O40) and (b) Preyssler (H14(NaP5W30O110]), have been used to synthesize conductive silver nanoparticle–polyaniline–heteropolytungstate, (AgNPs–PAni–HPW) nanocomposites.![]()
Collapse
Affiliation(s)
- Abbas Amini
- Centre for Infrastructure Engineering
- Western Sydney University
- Kingswood Campus
- Penrith
- Australia
| | - Marjan Rahimi
- Department of Chemistry
- Mashhad Branch
- Islamic Azad University
- Mashhad
- Iran
| | | | - Chun Cheng
- Department of Materials Science and Engineering
- South University of Science and Technology
- Shenzhen
- China
| | - Bijan Samali
- Centre for Infrastructure Engineering
- Western Sydney University
- Kingswood Campus
- Penrith
- Australia
| |
Collapse
|
41
|
Tanaka Y, Hasegawa T, Shimamura T, Ukeda H, Ueda T. Potentiometric evaluation of antioxidant capacity using polyoxometalate-immobilized electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
Jiao J, Zuo J, Pang H, Tan L, Chen T, Ma H. A dopamine electrochemical sensor based on Pd-Pt alloy nanoparticles decorated polyoxometalate and multiwalled carbon nanotubes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Mihrican Muti, Melike Cantopcu. Nanosensing Platform for the Electrochemical Determination of Dopamine. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818080075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Fabrication of Metal-Substituted Polyoxometalates for Colorimetric Detection of Dopamine and Ractopamine. MATERIALS 2018; 11:ma11050674. [PMID: 29701649 PMCID: PMC5978051 DOI: 10.3390/ma11050674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 11/26/2022]
Abstract
A novel colorimetric detection method based on the peroxidase-like activity of metal-substituted polyoxometalates (POMs) of SiW9M3 (M = Co2+, Fe3+, Cu2+, Mn2+) has been established. POMs can catalyze oxidation of dopamine (DA) and ractopamine (RAC) by H2O2 in aqueous solutions. SiW9Co3-based POMs detect DA at concentrations as low as 5.38 × 10−6 mol·L−1 simply by observation of the color change from colorless to orange using the naked eye. RAC is detected by observing the change from colorless to slight red by SiW9Cu3 with a detection limit of 7.94 × 10−5 mol·L−1. This study shows that colorimetric DA and RAC detection using SiW9Co3 and SiW9Cu3 is highly selective and sensitive as well as visually observable.
Collapse
|
45
|
Boussema F, Gross AJ, Hmida F, Ayed B, Majdoub H, Cosnier S, Maaref A, Holzinger M. Dawson-type polyoxometalate nanoclusters confined in a carbon nanotube matrix as efficient redox mediators for enzymatic glucose biofuel cell anodes and glucose biosensors. Biosens Bioelectron 2018. [PMID: 29524913 DOI: 10.1016/j.bios.2018.02.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Two new inorganic-organic hybrid materials based on heteropolyoxometalates (POMs): (C4H10N)6[P2Mo18O62]·4H2O (P2Mo18) and (C6H8NO)4[H2P2W18O62]·6H2O (P2W18) are reported as mediators for electron transfer between FAD-dependent glucose dehydrogenase (FAD-GDH) and a multiwalled carbon nanotube (MWCNT) matrix for glucose biofuel cell and biosensor applications. These polyoxometalates were chosen due to their promising redox behavior in a potential range for mediated electron transfer with the glucose oxidizing enzyme, FAD-GDH. P2Mo18 and P2W18 were immobilized on 1-pyrenemethylamine (PMA) functionalized MWCNT deposits. After immobilization of FAD-GDH, the P2W18-modified MWCNT electrode demonstrated mediated electron transfer and provided a catalytic current density of 0.34 mA cm-2 at 0.2 V vs SCE with an open circuit potential (OCP) of -0.08 V vs SCE. A 10-fold increase in catalytic current to 4.7 mA cm-2 at 0.2 V vs SCE and a slightly lower OCP of -0.10 V vs SCE was observed for an equivalent electrode modified with P2Mo18.The apparent superiority of P2Mo18 is related, at least in part, to its improved incorporation in the MWCNT matrix compared to P2W18. Both POM-modified bioanodes showed exceptional stabilities with 45% of their initial performances remaining after 15 days. The mediated electron transfer capacities of the POMs were also evaluated in a glucose sensor setup and showed very satisfying performances for glucose detection, including a sensitivity of 0.198 mA mol L-1 cm-2, a satisfying linear range between 1 mmol L-1 and 20 mmol L-1, and good reproducibility for the P2Mo18 electrode.
Collapse
Affiliation(s)
- Feriel Boussema
- Laboratoire des Interfaces et des Matériaux Avancés, Faculté des Sciences de Monastir, Univ. Monastir, 5000, Tunisia
| | - Andrew J Gross
- Département de Chimie Moléculaire, CNRS-Univ. of Grenoble Alpes, 38041, France; CERMAV, CNRS Grenoble, 38041, France
| | - Fatma Hmida
- Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Monastir, Univ. Monastir, 5000, Tunisia
| | - Brahim Ayed
- Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Monastir, Univ. Monastir, 5000, Tunisia
| | - Hatem Majdoub
- Laboratoire des Interfaces et des Matériaux Avancés, Faculté des Sciences de Monastir, Univ. Monastir, 5000, Tunisia
| | - Serge Cosnier
- Département de Chimie Moléculaire, CNRS-Univ. of Grenoble Alpes, 38041, France
| | - Abderrazak Maaref
- Laboratoire des Interfaces et des Matériaux Avancés, Faculté des Sciences de Monastir, Univ. Monastir, 5000, Tunisia
| | - Michael Holzinger
- Département de Chimie Moléculaire, CNRS-Univ. of Grenoble Alpes, 38041, France.
| |
Collapse
|
46
|
Sun M, Wang T, Li F, Sun Z, Xu L. A novel sandwich-tungstoantimonate cluster with FeII ions: synthesis, magnetic property and electrochemical sensing of dopamine. NEW J CHEM 2018. [DOI: 10.1039/c8nj00187a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel sandwich-type tungstoantimonate with ferrous ions was synthesized and its functional application in electrochemical sensing of dopamine was demonstrated.
Collapse
Affiliation(s)
- Minghui Sun
- Key Laboratory of Polyoxometalates Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Tianqi Wang
- Key Laboratory of Polyoxometalates Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Fengyan Li
- Key Laboratory of Polyoxometalates Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhixia Sun
- Key Laboratory of Polyoxometalates Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Lin Xu
- Key Laboratory of Polyoxometalates Science of Ministry of Education
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
47
|
Li S, Zhang L, Wang J, Zhang X, Hu Y, Yu Y, Yang X, Zhang J. A new (1D + 3D) polyoxometalate-based metal-organic pseudo-rotaxane framework. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Rao H, Gao Y, Ge H, Zhang Z, Liu X, Yang Y, Liu Y, Liu W, Zou P, Wang Y, Wang X, He H, Zeng X. An “on-off-on” fluorescent probe for ascorbic acid based on Cu-ZnCdS quantum dots and α-MnO2 nanorods. Anal Bioanal Chem 2017. [DOI: 10.1007/s00216-017-0389-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Synthesis of monodispersed PEDOT/Au hollow nanospheres and its application for electrochemical determination of dopamine and uric acid. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Hao Y, Feng S, Liu Y, Xu J, Ma Y, Wang J. Electrochemical Sensor based on Indium Tin Oxide Glass Modified with Poly(Ethyleneimine)/Phosphomolybdic Acid Composite Multilayers. ELECTROANAL 2017. [DOI: 10.1002/elan.201600672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yanjun Hao
- Key Laboratory of Oil & Gas Fin Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi 830046 China
- School of Life Science and Engineering; Southwest Jiaotong University; Chengdu 610031 China
| | - Shun Feng
- School of Life Science and Engineering; Southwest Jiaotong University; Chengdu 610031 China
| | - Yumei Liu
- Key Laboratory of Oil & Gas Fin Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi 830046 China
| | - Jie Xu
- Key Laboratory of Oil & Gas Fin Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi 830046 China
| | - Yuhua Ma
- Key Laboratory of Oil & Gas Fin Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi 830046 China
| | - Jide Wang
- Key Laboratory of Oil & Gas Fin Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi 830046 China
| |
Collapse
|