1
|
Guven N, Yucel B, Sultanova H, Camurlu P. Multichromic metallopolymers of poly(2,5-dithienylpyrrole)s derived through tethering of ruthenium(II) bipiridyl complex. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Neto JL, da Silva LP, da Silva JB, Ferreira RL, da Silva AJC, da Silva JC, de Oliveira ÍN, Lima DJ, Ribeiro AS. Multielectrochromic amide-based poly(2,5-dithienylpyrrole) bearing a fluorene derivative: Synthesis, characterization, and optoelectronic properties. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
4-(Trifluoromethoxy)phenyl-Containing Polymers as Promising Anodic Materials for Electrochromic Devices. COATINGS 2020. [DOI: 10.3390/coatings10121251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three 4-(trifluoromethoxy)phenyl-based polydithienylpyrroles (PTTPP, P(TTPP-co-DTC), and P(TTPP-co-DTP)) were synthesized electrochemically and their electrochromic behaviors were characterized. The introduction of electron withdrawing trifluoromethoxy unit in the side chain of polydithienylpyrroles (PSNS) decreases the HOMO and LUMO energy levels of PSNS. PTTPP film displays three various colors (grayish-yellow at 0 V, grayish-blue at 1.0 V, and bluish-violet at 1.4 V) from reduced to oxidized states. The optical contrast of PTTPP, P(TTPP-co-DTC), and P(TTPP-co-DTP) electrodes are 24.5% at 1050 nm, 49.0% at 916 nm, and 53.8% at 1302 nm, respectively. The highest η of the PTTPP electrode is 379.64 cm2 C−1 at 1050 nm. Three ECDs based on PTTPP, P(TTPP-co-DTC), or P(TTPP-co-DTP) as anodic film and PProDOT-Et2 as cathodic film were fabricated. PTTPP/PProDOT-Et2 ECD showed high transmittance change (35.7% at 588 nm) and high η (890.96 cm2·C−1 at 588 nm). P(TTPP-co-DTC)/PProDOT-Et2 and P(TTPP-co-DTP)/PProDOT-Et2 ECDs showed high transmittance change, rapid response time, adequate open circuit memory, and good electrochemical redox stability. Based on these findings, this work provides novel insights for appropriate design of high transmittance change and high efficient multi-colored electrochromic polymers.
Collapse
|
4
|
Dong Y, Ma Y, Bai R, Zhang Q, Han Y, Zhong S, Zhao Y, Han L, Li T. Exploring the Effects of Acid Fuchsin on Microscopic Morphology and Properties for Polypyrrole. J PHOTOPOLYM SCI TEC 2019. [DOI: 10.2494/photopolymer.32.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaoyao Dong
- College of Materials Science and Engineering, Shandong University of Science and Technology
| | - Yong Ma
- College of Materials Science and Engineering, Shandong University of Science and Technology
| | - Ruiqin Bai
- College of Materials Science and Engineering, Shandong University of Science and Technology
| | - Qiang Zhang
- College of Materials Science and Engineering, Shandong University of Science and Technology
| | - Yongqin Han
- College of Materials Science and Engineering, Shandong University of Science and Technology
| | - Sijia Zhong
- College of Materials Science and Engineering, Shandong University of Science and Technology
| | - Yaqi Zhao
- College of Materials Science and Engineering, Shandong University of Science and Technology
| | - Lu Han
- College of Materials Science and Engineering, Shandong University of Science and Technology
| | - Tingxi Li
- College of Materials Science and Engineering, Shandong University of Science and Technology
| |
Collapse
|
5
|
Electrochemical and optical characterization of a multielectrochromic copolymer based on 3,4-ethylenedioxythiophene and functionalized dithienylpyrrole derivative. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Kuo CW, Wu BW, Chang JK, Chang JC, Lee LT, Wu TY, Ho TH. Electrochromic Devices Based on Poly(2,6-di(9H-carbazol-9-yl)pyridine)-Type Polymer Films and PEDOT-PSS. Polymers (Basel) 2018; 10:E604. [PMID: 30966638 PMCID: PMC6403788 DOI: 10.3390/polym10060604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022] Open
Abstract
2,6-Di(9H-carbazol-9-yl)pyridine (DiCP) was synthesized and its corresponding homopolymer (PDiCP) and copolymers (P(DiCP-co-CPDT), P(DiCP-co-CPDT2), P(DiCP-co-CPDTK), and P(DiCP-co-CPDTK2)) were synthesized electrochemically. The anodic copolymer with DiCP:cyclopentadithiophene ketone (CPDTK) = 1:1 feed molar ratio showed high transmittance change (ΔT%) and colouration efficiency (η), which were measured as 39.5% and 184.1 cm² C-1 at 1037 nm, respectively. Electrochromic devices (ECDs) were composed of PDiCP, P(DiCP-co-CPDT), P(DiCP-co-CPDT2), P(DiCP-co-CPDTK), and P(DiCP-co-CPDTK2) as anodically-colouring polymers, and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as cathodically-colouring polymers. P(DiCP-co-CPDTK)/PEDOT-PSS ECD showed light silverish-yellow at 0.0 V, light grey at 0.7 V, grey at 1.3 V, light greyish blue at 1.7 V, and greyish blue at 2.0 V. Moreover, P(DiCP-co-CPDTK)/PEDOT-PSS ECD presented high ΔT (38.2%) and high η (633.8 cm² C-1) at 635 nm.
Collapse
Affiliation(s)
- Chung-Wen Kuo
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| | - Bo-Wei Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| | - Jeng-Kuei Chang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Jui-Cheng Chang
- Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| | - Li-Ting Lee
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan.
| | - Tzi-Yi Wu
- Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| | - Tsung-Han Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| |
Collapse
|
7
|
Dithienylpyrrole- and Tris[4-(2-thienyl)phenyl]amine-Containing Copolymers as Promising Anodic Layers in High-Contrast Electrochromic Devices. COATINGS 2018. [DOI: 10.3390/coatings8050164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Nanocups and hollow microspheres formed by a one-step and templateless electropolymerization of thieno[3,4-b]thiophene derivatives as a function of the substituent. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Applications of Poly(indole-6-carboxylic acid-co-2,2′-bithiophene) Films in High-Contrast Electrochromic Devices. COATINGS 2018. [DOI: 10.3390/coatings8030102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Wu TY, Su SG, Chiu CL, Kuo CW, Tung YH. Impact of polyethyleneglycol addition on diffusion coefficients in binary ionic liquid electrolytes composed of dicationic ionic liquid and polyethyleneglycol. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:86-94. [PMID: 28499327 DOI: 10.1002/mrc.4609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
We conduct a comparative study of conductivity and diffusion coefficient of two dicationic ionic liquids (3,3'-(octane-1,8-diyl)bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMCI][TFSI], S1) and 3,3'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMOI][TFSI], S2)) at various temperatures. The diffusion coefficients of cation and anion in ionic liquids are determined by using pulse gradient spin-echo nuclear magnetic resonance method. S2 shows lower viscosity, higher conductivity, and higher diffusion coefficient than those of S1. Moreover, the influence of polyethyleneglycol (PEG200, Mw = 200) addition in PEG200/IL binary solutions is investigated. PEG200/S1 binary solutions show lower viscosity, higher conductivity, and higher diffusion coefficient than those of neat S1. The experimental molar conductivity (Λ) of neat IL and PEG200/IL binary solutions is lower than that of the calculated molar conductivity (ΛNMR ) from pulse gradient spin-echo nuclear magnetic resonance method at various temperatures, indicating that not all the diffusion species belong to the ionic conduction. In other words, NMR diffusion measurements comprise charged and paired (without charge) ions. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tzi-Yi Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Shyh-Gang Su
- Department of Chemistry, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chuen-Lin Chiu
- Department of Chemistry, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chung-Wen Kuo
- Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, 80778, Taiwan
| | - Yi-Hsuan Tung
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| |
Collapse
|
11
|
Kuo CW, Chang JK, Lin YC, Wu TY, Lee PY, Ho TH. Poly(tris(4-carbazoyl-9-ylphenyl)amine)/Three Poly(3,4-ethylenedioxythiophene) Derivatives in Complementary High-Contrast Electrochromic Devices. Polymers (Basel) 2017; 9:E543. [PMID: 30965849 PMCID: PMC6418890 DOI: 10.3390/polym9100543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022] Open
Abstract
A carbazole-based polymer (poly(tris(4-carbazoyl-9-ylphenyl)amine) (PtCz)) is electrosynthesized on an indium tin oxide (ITO) electrode. PtCz film displays light yellow at 0.0 V, earthy yellow at 1.3 V, grey at 1.5 V, and dark grey at 1.8 V in 0.2 M LiClO₄/ACN/DCM (ACN/DCM = 1:3, by volume) solution. The ΔT and coloration efficiency (η) of PtCz film are 30.5% and 54.8 cm²∙C-1, respectively, in a solution state. Three dual-type electrochromic devices (ECDs) are fabricated using the PtCz as the anodic layer, poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3,3-dimethyl-3,4-dihydro-thieno[3,4-b][1,4]dioxepine) (PProDOT-Me₂), and poly(3,4-(2,2-diethylpropylenedioxy)thiophene) (PProDOT-Et₂) as the cathodic layers. PtCz/PProDOT-Me₂ ECD shows high ΔTmax (36%), high ηmax (343.4 cm²·C-1), and fast switching speed (0.2 s) at 572 nm. In addition, PtCz/PEDOT, PtCz/PProDOT-Me₂, and PtCz/PProDOT-Et₂ ECDs show satisfactory open circuit memory and long-term stability.
Collapse
Affiliation(s)
- Chung-Wen Kuo
- Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan.
| | - Jeng-Kuei Chang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Tzi-Yi Wu
- Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| | - Po-Ying Lee
- Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan.
| | - Tsung-Han Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan.
| |
Collapse
|
12
|
Kuo CW, Lee PY. Electrosynthesis of Copolymers Based on 1,3,5-Tris(N-Carbazolyl)Benzene and 2,2'-Bithiophene and Their Applications in Electrochromic Devices. Polymers (Basel) 2017; 9:E518. [PMID: 30965819 PMCID: PMC6418989 DOI: 10.3390/polym9100518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/23/2022] Open
Abstract
Poly(1,3,5-tris(N-carbazolyl)benzene) (PtnCz) and three copolymers based on 1,3,5-tris(N-carbazolyl)benzene (tnCz) and 2,2'-bithiophene (bTp) were electrochemically synthesized. The anodic P(tnCz1-bTp2) film with a tnCz/bTp feed molar ratio of 1/2 showed four colors (light orange at 0.0 V, yellowish-orange at 0.7 V, yellowish-green at 0.8 V, and blue at 1.1 V) from the neutral state to oxidized states. The optical contrast (∆T%) and coloration efficiency (η) of the P(tnCz1-bTp2) film were measured as 48% and 112 cm²∙C-¹, respectively, at 696 nm. Electrochromic devices (ECDs) based on PtnCz, P(tnCz1-bTp1), P(tnCz1-bTp2), P(tnCz1-bTp4), and PbTp films as anodic polymer layers and poly(3,4-dihydro-3,3-dimethyl-2H-thieno[3,4-b-1,4]dioxepin) (PProDOT-Me₂) as cathodic polymer layers were assembled. P(tnCz1-bTp2)/PProDOT-Me₂ ECD showed three various colors (saffron yellow, yellowish-blue, and dark blue) at potentials ranging from -0.3 to 1.5 V. In addition, P(tnCz1-bTp2)/PProDOT-Me₂ ECD showed a high ∆T% value (40% at 630 nm) and a high coloration efficiency (519 cm²∙C-¹ at 630 nm).
Collapse
Affiliation(s)
- Chung-Wen Kuo
- Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan.
| | - Po-Ying Lee
- Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan.
| |
Collapse
|
13
|
Su YS, Wu TY. Three Carbazole-Based Polymers as Potential Anodically Coloring Materials for High-Contrast Electrochromic Devices. Polymers (Basel) 2017; 9:E284. [PMID: 30970962 PMCID: PMC6431872 DOI: 10.3390/polym9070284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 11/17/2022] Open
Abstract
Three carbazole-based conjugated polymers (poly(3,6-di(2-thienyl)carbazole) (PDTC), poly(2,7-bis(carbazol-9-yl)-9,9-spirobifluorene) (PS2CBP), and poly(3,6-bis(N-carbazole)-N-ethylcarbazole) (PCEC)) are synthesized using electrochemical polymerization. The spectroelectrochemical studies indicate that the PDTC, PS2CBP, and PCEC films show reversible electrochromic behaviors in their redox states, and the PS2CBP film shows a distinct color transition with four various colors (gray at 0 V, grayish-green at 1.0 V, moss green at 1.2 V, and foliage green at 1.4 V). The maximum optical contrast of the PS2CBP and PCEC films is 39.83% at 428 nm and 32.41% at 420 nm, respectively, in an ionic liquid solution. Dual-type electrochromic devices (ECDs) that employ PDTC, PS2CBP, or PCEC film as an anodic layer, and PProDOT-Et₂ film as a cathodic layer, were constructed. The as-prepared PCEC/PProDOT-Et₂ ECD shows high optical contrast (38.25% at 586 nm) and high coloration efficiency (369.85 cm² C-1 at 586 nm), and the PS2CBP/PProDOT-Et₂ ECD shows high optical contrast (34.45% at 590 nm), good optical memory, and good long-term cycling stability.
Collapse
Affiliation(s)
- Yuh-Shan Su
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| | - Tzi-Yi Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| |
Collapse
|
14
|
Su YS, Chang JC, Wu TY. Applications of Three Dithienylpyrroles-Based Electrochromic Polymers in High-Contrast Electrochromic Devices. Polymers (Basel) 2017; 9:E114. [PMID: 30970793 PMCID: PMC6432113 DOI: 10.3390/polym9030114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/28/2022] Open
Abstract
Three dithienylpyrroles (1-(4-(methylthio)phenyl)-2,5-di(thiophen-2-yl)-pyrrole (MPS), 1-(4-methoxyphenyl)-2,5-di(thiophen-2-yl)-pyrrole (MPO), and 4-(2,5-di(thiophen-2-yl)-pyrrol-1-yl)benzonitrile (ANIL)) were synthesized and their corresponding polydithienylpyrroles (PSNS) were electrosynthesized using electrochemical polymerization. Spectroelectrochemical studies indicated that poly(1-(4-(methylthio)phenyl)-2,5-di(thiophen-2-yl)-pyrrole) (PMPS) film was green, dark green, and brown in the neutral, oxidation, and highly oxidized state, respectively. The incorporation of a MPS unit into the PSNS backbone gave rise to a darker color than those of the MPO and ANIL units in the highly oxidized state. The PMPS film showed higher ΔTmax (54.47% at 940 nm) than those of the PMPO (43.87% at 890 nm) and PANIL (44.63% at 950 nm) films in an ionic liquid solution. Electrochromic devices (ECDs) employing PMPS, PMPO, and PANIL as anodic layers and poly(3,4-(2,2-diethypropylenedioxy)thiophene)(PProDOT-Et₂) as a cathodic layer were constructed. PMPO/PProDOT-Et₂ ECD showed the highest ΔTmax (41.13%) and coloration efficiency (674.67 cm²·C-¹) at 626 nm, whereas PMPS/PProDOT-Et2 ECD displayed satisfactory ΔTmax (32.51%) and coloration efficiency (637.25 cm²·C-¹) at 590 nm. Repeated cyclic voltammograms of PMPS/PProDOT-Et₂, PMPO/PProDOT-Et₂, and PANIL/PProDOT-Et₂ ECDs indicated that ECDs had satisfactory redox stability.
Collapse
Affiliation(s)
- Yuh-Shan Su
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| | - Jui-Cheng Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Tzi-Yi Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| |
Collapse
|
15
|
Kuo CW, Wu TY, Huang MW. Electrochromic characterizations of copolymers based on 4,4′-bis( N -carbazolyl)-1,1′-biphenyl and indole-6-carboxylic acid and their applications in electrochromic devices. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Copolymers Based on 1,3-Bis(carbazol-9-yl)benzene and Three 3,4-Ethylenedioxythiophene Derivatives as Potential Anodically Coloring Copolymers in High-Contrast Electrochromic Devices. Polymers (Basel) 2016; 8:polym8100368. [PMID: 30974647 PMCID: PMC6432342 DOI: 10.3390/polym8100368] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 01/31/2023] Open
Abstract
In this study, copolymers based on 1,3-bis(carbazol-9-yl)benzene (BCz) and three 3,4-ethylenedioxythiophene derivatives (3,4-ethylenedioxythiophene (EDOT), 3,4-(2,2-dimethylpropylenedioxy)thiophene (ProDOT-Me₂), and 3,4-ethylenedithiathiophene (EDTT)) were electrochemically synthesized and their electrochemical and electrochromic properties were characterized. The anodic copolymer P(BCz-co-ProDOT) with BCz/ProDOT-Me₂ = 1/1 feed molar ratio showed high optical contrast (ΔT%) and coloring efficiency (η), measured as 52.5% and 153.5 cm²∙C-1 at 748 nm, respectively. Electrochromic devices (ECDs) based on P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT) as anodic polymer layers, and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as cathodic polymer layer were fabricated. P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECD showed three different colors (light yellow, yellowish-blue, and dark blue) at different applied potentials. In addition, the highest optical contrast (ΔT%) of P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECD was found to be 41% at 642 nm and the coloration efficiency was calculated to be 416.5 cm²∙C-1 at 642 nm. All ECDs showed satisfactory optical memories and electrochemical cyclic stability.
Collapse
|
17
|
Nunes M, Araújo M, Fonseca J, Moura C, Hillman R, Freire C. High-Performance Electrochromic Devices Based on Poly[Ni(salen)]-Type Polymer Films. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14231-43. [PMID: 27175794 DOI: 10.1021/acsami.6b01977] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report the application of two poly[Ni(salen)]-type electroactive polymer films as new electrochromic materials. The two films, poly[Ni(3-Mesalen)] (poly[1]) and poly[Ni(3-MesaltMe)] (poly[2]), were successfully electrodeposited onto ITO/PET flexible substrates, and their voltammetric characterization revealed that poly[1] showed similar redox profiles in LiClO4/CH3CN and LiClO4/propylene carbonate (PC), while poly[2] showed solvent-dependent electrochemical responses. Both films showed multielectrochromic behavior, exhibiting yellow, green, and russet colors according to their oxidation state, and promising electrochromic properties with high electrochemical stability in LiClO4/PC supporting electrolyte. In particular, poly[1] exhibited a very good electrochemical stability, changing color between yellow and green (λ = 750 nm) during 9000 redox cycles, with a charge loss of 34.3%, an optical contrast of ΔT = 26.2%, and an optical density of ΔOD = 0.49, with a coloration efficiency of η = 75.55 cm(2) C(-1). On the other hand, poly[2] showed good optical contrast for the color change from green to russet (ΔT = 58.5%), although with moderate electrochemical stability. Finally, poly[1] was used to fabricate a solid-state electrochromic device using lateral configuration with two figures of merit: a simple shape (typology 1) and a butterfly shape (typology 2); typology 1 showed the best performance with optical contrast ΔT = 88.7% (at λ = 750 nm), coloration efficiency η = 130.4 cm(2) C(-1), and charge loss of 37.0% upon 3000 redox cycles.
Collapse
Affiliation(s)
| | | | - Joana Fonseca
- CeNTI , Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | | | - Robert Hillman
- Department of Chemistry, University of Leicester , Leicester LE1 7RH, United Kingdom
| | | |
Collapse
|
18
|
Applications of Tris(4-(thiophen-2-yl)phenyl)amine- and Dithienylpyrrole-based Conjugated Copolymers in High-Contrast Electrochromic Devices. Polymers (Basel) 2016; 8:polym8060206. [PMID: 30979303 PMCID: PMC6431980 DOI: 10.3390/polym8060206] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023] Open
Abstract
Tris(4-(thiophen-2-yl)phenyl)amine- and dithienylpyrrole-based copolymers (P(TTPA-co-DIT) and P(TTPA-co-BDTA)) were electropolymerized on ITO electrode by applying constant potentials of 1.0, 1.1, and 1.2 V. Spectroelectrochemical investigations revealed that P(TTPA-co-DIT) film displayed more color changes than P(TTPA-co-BDTA) film. The P(TTPA-co-DIT) film is yellow in the neutral state, yellowish-green and green in the intermediate state, and blue (1.2 V) in highly oxidized state. The ∆Tmax of the P(TTPA-co-DIT) and P(TTPA-co-BDTA) films were measured as 60.3% at 1042 nm and 47.1% at 1096 nm, respectively, and the maximum coloration efficiency (η) of P(TTPA-co-DIT) and P(TTPA-co-BDTA) films were calculated to be 181.9 cm2·C−1 at 1042 nm and 217.8 cm2·C−1 at 1096 nm, respectively, in an ionic liquid solution. Dual type electrochromic devices (ECDs) consisting of P(TTPA-co-DIT) (or P(TTPA-co-BDTA)) anodic copolymer, ionic liquid-based electrolyte, and poly(3,4-(2,2-diethylpropylenedioxy)thiophene) (PProDOT-Et2) cathodic polymer were constructed. P(TTPA-co-BDTA)/PProDOT-Et2 ECD showed high ΔTmax (48.1%) and high coloration efficiency (649.4 cm2·C−1) at 588 nm. Moreover, P(TTPA-co-DIT)/PProDOT-Et2 and P(TTPA-co-BDTA)/PProDOT-Et2 ECDs displayed satisfactory optical memory and long term switching stability.
Collapse
|
19
|
Wu TY, Chen PR, Chen HR, Kuo CW. Preparation of Pt/poly(aniline-co-orthanilic acid) nanocomposites and their applications for electrocatalytic oxidation of methanol. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Wu TY, Li JL. Electrochemical synthesis, optical, electrochemical and electrochromic characterizations of indene and 1,2,5-thiadiazole-based poly(2,5-dithienylpyrrole) derivatives. RSC Adv 2016. [DOI: 10.1039/c5ra27902j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PBDTA/PProDOT-Et2 ECD showed high ΔTmax (43.8%) and satisfactory cyclic voltammetry stability, whereas P(BDTA-co-DTP)/PProDOT-Et2 ECD showed high ΔTmax (44.0%) and coloration efficiency (504.6 cm2 C−1).
Collapse
Affiliation(s)
- Tzi-Yi Wu
- Department of Chemical and Materials Engineering
- National Yunlin University of Science and Technology
- Yunlin 64002
- Republic Of China
| | - Jhao-Lun Li
- Department of Chemical and Materials Engineering
- National Yunlin University of Science and Technology
- Yunlin 64002
- Republic Of China
| |
Collapse
|
21
|
He LY, Urrego-Riveros S, Gates PJ, Näther C, Brinkmann M, Abetz V, Staubitz A. Synthesis of poly(thiophene-alt-pyrrole) from a difunctionalized thienylpyrrole by Kumada polycondensation. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.05.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Dulgerbaki C, Oksuz AU. Fabricating polypyrrole/tungsten oxide hybrid based electrochromic devices using different ionic liquids. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cigdem Dulgerbaki
- Faculty of Arts and Science, Department of Chemistry; Suleyman Demirel University; Isparta 32260 Turkey
| | - Aysegul Uygun Oksuz
- Faculty of Arts and Science, Department of Chemistry; Suleyman Demirel University; Isparta 32260 Turkey
| |
Collapse
|
23
|
Wu TY, Liao JW, Chen CY. Electrochemical synthesis, characterization and electrochromic properties of indan and 1,3-benzodioxole-based poly(2,5-dithienylpyrrole) derivatives. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.10.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|