1
|
Aslan M, Aydın F, Levent A. Voltammetric studies and spectroscopic investigations of the interaction of an anticancer drug bevacizumab-DNA and analytical applications of disposable pencil graphite sensor. Talanta 2023; 265:124893. [DOI: https:/doi.org/10.1016/j.talanta.2023.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
|
2
|
Aslan M, Aydın F, Levent A. Voltammetric studies and spectroscopic investigations of the interaction of an anticancer drug bevacizumab-DNA and analytical applications of disposable pencil graphite sensor. Talanta 2023; 265:124893. [PMID: 37437394 DOI: 10.1016/j.talanta.2023.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
A sensitive, simple, fast electrochemical biosensor for the DNA interaction of bevacizumab (BEVA), which is used as a targeted drug in cancer treatment, was developed using the differential pulse voltammetry (DPV) technique with pencil graphite electrode (PGE). In the work, PGE was electrochemically activated in a supporting electrolyte medium of +1.4 V/60 s (PBS pH 3.0). Surface characterization of PGE was carried out by SEM, EDX, EIS, and CV techniques. Determination and electrochemical properties of BEVA were examined with CV and DPV techniques. BEVA gave a distinct analytical signal on the PGE surface at a potential of +0.90 V (vs. Ag/AgCl). In the procedure proposed in this study, BEVA gave a linear response on PGE in PBS (pH 3.0 containing 0.02 M NaCl) (0.1 mg mL-1 - 0.7 mg mL-1) with LOD and LOQ values of 0.026 mg mL-1 and 0.086 μg mL-1, respectively. BEVA was reacted with 20 μg mL-1 DNA in PBS for 150 s and analytical peak signals for adenine and guanine bases were evaluated. The interaction between BEVA-DNA was supported by UV-Vis. Absorption spectrometry and the binding constant was determined as 7.3 × 104.
Collapse
Affiliation(s)
- Mehmet Aslan
- Department of Chemistry, Faculty of Sciences, Dicle University, Diyarbakir, Turkey
| | - Fırat Aydın
- Department of Chemistry, Faculty of Sciences, Dicle University, Diyarbakir, Turkey
| | - Abdulkadir Levent
- Department of Chemistry, Faculty of Arts and Sciences, Batman University, Batman, Turkey.
| |
Collapse
|
3
|
ERDEM A, ŞENTÜRK H, YILDIZ E, MARAL M, YILDIRIM A, BOZOĞLU A, KIVRAK B, AY NC. Electrochemical DNA biosensors developed for the monitoring of biointeractions with drugs: a review. Turk J Chem 2023; 47:864-887. [PMID: 38173734 PMCID: PMC10760829 DOI: 10.55730/1300-0527.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
The interaction of drugs with DNA is important for the discovery of novel drug molecules and for understanding the therapeutic effects of drugs as well as the monitoring of side effects. For this reason, many studies have been carried out to investigate the interactions of drugs with nucleic acids. In recent years, a large number of studies have been performed to electrochemically detect drug-DNA interactions. The fast, sensitive, and accurate results of electrochemical techniques have resulted in a leading role for their implementation in this field. By means of electrochemical techniques, it is possible not only to demonstrate drug-DNA interactions but also to quantitatively analyze drugs. In this context, electrochemical biosensors for drug-DNA interactions have been examined under different headings including anticancer, antiviral, antibiotic, and central nervous system drugs as well as DNA-targeted drugs. An overview of the studies related to electrochemical DNA biosensors developed for the detection of drug-DNA interactions that were reported in the last two decades in the literature is presented herein along with their applications and they are discussed together with their future perspectives.
Collapse
Affiliation(s)
- Arzum ERDEM
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Huseyin ŞENTÜRK
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Esma YILDIZ
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Meltem MARAL
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Ayla YILDIRIM
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Aysen BOZOĞLU
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Burak KIVRAK
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Neslihan Ceren AY
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| |
Collapse
|
4
|
Sukanya R, Mohandoss S, Lee YR. Synthesis of active-site rich molybdenum-doped manganese tungstate nanocubes for effective electrochemical sensing of the antiviral drug (COVID-19) nitazoxanide. CHEMOSPHERE 2023; 311:137005. [PMID: 36347350 PMCID: PMC9636157 DOI: 10.1016/j.chemosphere.2022.137005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Nitazoxanide (NTZ), a promising antiviral agent, is currently being tested in clinical trials as a potential treatment for novel coronavirus disease 2019 (COVID -19). This paper describes a one-pot hydrothermal synthesis to prepare molybdenum (Mo)-doped manganese tungstate nanocubes (Mo-MnWO4 NCs) for the electrochemical sensing of NTZ. The as-prepared Mo-MnWO4 NCs were characterized using various techniques such as XRD, Raman, FE-SEM, FE-TEM, and XPS to confirm the crystal structure, morphology, and elemental composition. The obtained results demonstrate that Mo doping on MnWO4 generates many vacancy sites, exhibiting remarkable electrochemical activity. The kinetic parameters of the electrode modified with Mo-MnWO4 NCs were calculated to be (Ks) 1.1 × 10-2 cm2 s-1 and (α) 0.97, respectively. Moreover, a novel electrochemical sensor using Mo-MnWO4 NCs was fabricated to detect NTZ, which is used as a primary antibiotic to control COVID-19. Under optimal conditions, the electrochemical reduction of NTZ was determined with a low detection limit of 3.7 nM for a linear range of 0.014-170.2 μM with a high sensitivity of 0.78 μA μM-1 cm-2 and negligible interference with other nitro group-containing drugs, cations, and anions. The electrochemical sensor was successfully used to detect NTZ in the blood serum and urine samples and achieved high recoveries in the range of 94-99.2% and 95.3-99.6%, respectively. This work opens a way to develop high-performance sensing materials by exploring the introduction of defect engineering on metal tungstates to detect drug molecules for practical applications.
Collapse
Affiliation(s)
- Ramaraj Sukanya
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
5
|
Shahabadi N, Karampour F, Fatahi N, Zendehcheshm S. Synthesis, characterization, in vitro cytotoxicity and DNA interaction studies of antioxidant ferulic acid loaded on γ-Fe 2O 3@SiO 2 nanoparticles. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:994-1011. [PMID: 35815694 DOI: 10.1080/15257770.2022.2094409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
In this investigation, Fe3O4 magnetic nanoparticles (MNPs) were prepared via a chemical coprecipitation reaction, and the surface of Fe3O4 MNPs was coated with silica by a sol-gel process. The surface of Fe3O4@SiO2 MNPs was modified by an antioxidant agent, trans-ferulic acid, to achieve water-soluble MNPs for biological applications. Fourier transform infrared spectroscopy (FT-IR) showed that the MNPs were successfully coated with SiO2 and ferulic acid (FA) ligand. The morphology of γ-Fe2O3@SiO2-FA MNPs was found to be spherical in images of transmission electron microscopy (TEM) and showed a uniform size distribution with an average diameter of 21 nm. The in vitro cytotoxic activity of γ-Fe2O3@SiO2-FA MNPs and FA were investigated against the human cancer cells (MCF-7, PC-3, U-87 MG, A-2780, and A-549) by MTT colorimetric assay. The cytotoxic effect of MNPs on all cancer cell lines was several times of magnitude higher compared to free FA except for A-549 cell lines. Furthermore, in vitro DNA binding studies were investigated by UV-vis and circular dichroism spectroscopies.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | | | - Navid Fatahi
- Pharmacy College, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Saba Zendehcheshm
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
6
|
Quenching Studies as Important Toolkit for Exploring Binding Propensity of Metal Complexes with Serum Albumin and DNA (A Review). Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Karadurmus L, Dogan-Topal B, Kurbanoglu S, Shah A, Ozkan SA. The Interaction between DNA and Three Intercalating Anthracyclines Using Electrochemical DNA Nanobiosensor Based on Metal Nanoparticles Modified Screen-Printed Electrode. MICROMACHINES 2021; 12:mi12111337. [PMID: 34832748 PMCID: PMC8619472 DOI: 10.3390/mi12111337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
The screen-printed electrodes have gained increasing importance due to their advantages, such as robustness, portability, and easy handling. The manuscript presents the investigation of the interaction between double-strand deoxyribonucleic acid (dsDNA) and three anthracyclines: epirubicin (EPI), idarubicin (IDA), and doxorubicin (DOX) by differential pulse voltammetry on metal nanoparticles modified by screen-printed electrodes. In order to investigate the interaction, the voltammetric signals of dsDNA electroactive bases were used as an indicator. The effect of various metal nanomaterials on the signals of guanine and adenine was evaluated. Moreover, dsDNA/PtNPs/AgNPs/SPE (platinum nanoparticles/silver nanoparticles/screen-printed electrodes) was designed for anthracyclines–dsDNA interaction studies since the layer-by-layer modification strategy of metal nanoparticles increases the surface area. Using the signal of multi-layer calf thymus (ct)-dsDNA, the within-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 0.58% and 0.73%, respectively, and the between-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 1.04% and 1.26%, respectively. The effect of binding time and concentration of three anthracyclines on voltammetric signals of dsDNA bases were also evaluated. The response was examined in the range of 0.3–1.3 ppm EPI, 0.1–1.0 ppm IDA and DOX concentration on dsDNA/PtNPs/AgNPs/SPE. Electrochemical studies proposed that the interaction mechanism between three anthracyclines and dsDNA was an intercalation mode.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey
| | - Burcu Dogan-Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Correspondence: (B.D.-T.); (S.A.O.)
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Correspondence: (B.D.-T.); (S.A.O.)
| |
Collapse
|
8
|
Zhu ZM, Zhang WJ. Spectroscopic Analysis of the Interaction Between the Antiparasitic Drug Nitazoxanide and Bovine Serum Albumin. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01102-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Bayraktepe DE. A voltammetric study on drug-DNA interactions: Kinetic and thermodynamic aspects of the relations between the anticancer agent dasatinib and ds-DNA using a pencil lead graphite electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Four-way parallel factor analysis of voltammetric four-way dataset for monitoring the etoposide-DNA interaction with its binding constant determination. Bioelectrochemistry 2020; 134:107525. [DOI: 10.1016/j.bioelechem.2020.107525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
|
11
|
Synthesis and DNA interaction studies of Ni(II), Cu(II) and Co(II) complexes with a polyamine ligand containing homopiperazine; X-ray crystal structure of Cu(II) complex. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01253-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Şenel P, Agar S, Sayin VO, Altay F, Yurtsever M, Gölcü A. Elucidation of binding interactions and mechanism of Fludarabine with dsDNA via multispectroscopic and molecular docking studies. J Pharm Biomed Anal 2020; 179:112994. [DOI: 10.1016/j.jpba.2019.112994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/03/2023]
|
13
|
Espinosa-Bustos C, Canales C, Ramírez G, Jaque P, Salas CO. Unveiling interactions between DNA and cytotoxic 2-arylpiperidinyl-1,4-naphthoquinone derivatives: A combined electrochemical and computational study. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Shahabadi N, Abbasi AR, Moshtkob A, Hadidi S. Design, synthesis and DNA interaction studies of new fluorescent platinum complex containing anti-HIV drug didanosine. J Biomol Struct Dyn 2019; 38:2837-2848. [DOI: 10.1080/07391102.2019.1658643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Reza Abbasi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Institute of Nano Science and Nano Technology, Razi University, Kermanshah, Iran
| | - Ayda Moshtkob
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Shahzad S, Dogan-Topal B, Karadurmus L, Caglayan MG, Taskin Tok T, Uslu B, Shah A, Ozkan SA. Electrochemical, spectroscopic and molecular docking studies on the interaction of calcium channel blockers with dsDNA. Bioelectrochemistry 2019; 127:12-20. [DOI: 10.1016/j.bioelechem.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
|
16
|
Oliveira R, Amaro F, Azevedo M, Vale N, Gonçalves H, Antunes C, Rego R. New voltammetric and spectroscopic studies to quinacrine-DNA-Cdots interaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Improving antiproliferative effect of the nevirapine on Hela cells by loading onto chitosan coated magnetic nanoparticles as a fully biocompatible nano drug carrier. Int J Biol Macromol 2018; 118:1220-1228. [DOI: 10.1016/j.ijbiomac.2018.06.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 01/07/2023]
|
18
|
Shahabadi N, Moradi Fili S. DNA-interaction studies of a copper(II) complex containing ceftobiprole drug using molecular modeling and multispectroscopic methods. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1497165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Moradi Fili
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
19
|
Shahabadi N, Khorshidi A, Zhaleh H, Kashanian S. Synthesis, characterization, cytotoxicity and DNA binding studies of Fe 3 O 4 @SiO 2 nanoparticles coated by an antiviral drug lamivudine. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Jamshidvand A, Sahihi M, Mirkhani V, Moghadam M, Mohammadpoor-Baltork I, Tangestaninejad S, Amiri Rudbari H, Kargar H, Keshavarzi R, Gharaghani S. Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computational methods: Influence of substitutions on DNA-binding. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Kurbanoglu S, Dogan-Topal B, Rodriguez EP, Bozal-Palabiyik B, Ozkan SA, Uslu B. Advances in electrochemical DNA biosensors and their interaction mechanism with pharmaceuticals. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Mandal S, Sadhukhan R, Ghosh U, Mandal S, Saha M, Butcher RJ, Saha NC. Synthesis and characterization of two Cu(II) complexes with a new pyrazole-based Schiff base ligand: crystallography, DNA interaction and antimicrobial activity of Ni(II) and Cu(II) complexes. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1174773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Susmita Mandal
- Department of Chemistry, University of Kalyani, Kalyani, India
| | - Ratan Sadhukhan
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Soumik Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Manan Saha
- Department of Chemistry, University of Kalyani, Kalyani, India
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, DC, USA
| | | |
Collapse
|
23
|
Shahabadi N, Falsafi M, Mansouri K. Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles. Colloids Surf B Biointerfaces 2016; 141:213-222. [PMID: 26852105 DOI: 10.1016/j.colsurfb.2016.01.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 02/04/2023]
Abstract
In this study, Fe3O4@SiO2-cytarabine magnetic nanoparticles (MNPs) were prepared via chemical coprecipitation reaction and coating silica on the surface of Fe3O4 MNPs by Stöber method via sol-gel process. The surface of Fe3O4@SiO2 MNPs was modified by an anticancer drug, cytarabine. The structural properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Zetasizer analyzer, and transmission electron microscopy (TEM). The results indicated that the crystalline phase of iron oxide NPs was magnetite (Fe3O4) and the average sizes of Fe3O4@SiO2-cytarabine MNPs were about 23 nm. Also, the surface characterization of Fe3O4@SiO2-cytarabine MNPs by FT-IR showed that successful coating of Fe3O4 NPs with SiO2 and binding of cytarabine drug onto the surface of Fe3O4@SiO2 MNPs were through the hydroxyl groups of the drug. The in vitro cytotoxic activity of Fe3O4@SiO2-cytarabine MNPs was investigated against cancer cell line (HL60) in comparison with cytarabine using MTT colorimetric assay. The obtained results showed that the effect of Fe3O4@SiO2-cytarabine magnetic nanoparticles on the cell lines were about two orders of magnitude higher than that of cytarabine. Furthermore, in vitro DNA binding studies were investigated by UV-vis, circular dichroism, and fluorescence spectroscopy. The results for DNA binding illustrated that DNA aggregated on Fe3O4@SiO2-cytarabine MNPs via groove binding.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran; Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Monireh Falsafi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Shahabadi N, Falsafi M, Feizi F, Khodarahmi R. Functionalization of γ-Fe2O3@SiO2 nanoparticles using the antiviral drug zidovudine: synthesis, characterization, in vitro cytotoxicity and DNA interaction studies. RSC Adv 2016. [DOI: 10.1039/c6ra16564h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to design and prepare γ-Fe2O3@SiO2-zidovudine magnetic nanoparticles (MNPs) for magnetic guided drug targeting and biological applications.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry
- Faculty of Chemistry
- Razi University
- Kermanshah
- Iran
| | - Monireh Falsafi
- Department of Inorganic Chemistry
- Faculty of Chemistry
- Razi University
- Kermanshah
- Iran
| | - Foroozan Feizi
- Department of Analytical Chemistry
- Faculty of Chemistry
- Razi University
- Kermanshah
- Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC)
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| |
Collapse
|
25
|
Huang YM, Zheng SJ, Yan J, Yang HQ, Wu D, Wang Q, Li H. Investigation on the interaction of letrozole with herring sperm DNA through spectroscopic and modeling methods. LUMINESCENCE 2015; 31:1077-84. [DOI: 10.1002/bio.3074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Yan-Mei Huang
- College of Chemical Engineering; Sichuan University; Chengdu People's Republic of China
| | - Shou-Jun Zheng
- College of Chemical Engineering; Sichuan University; Chengdu People's Republic of China
| | - Jin Yan
- College of Chemical Engineering; Sichuan University; Chengdu People's Republic of China
| | - Hong-Qin Yang
- College of Chemical Engineering; Sichuan University; Chengdu People's Republic of China
| | - Di Wu
- College of Chemical Engineering; Sichuan University; Chengdu People's Republic of China
| | - Qing Wang
- College of Chemical Engineering; Sichuan University; Chengdu People's Republic of China
| | - Hui Li
- College of Chemical Engineering; Sichuan University; Chengdu People's Republic of China
| |
Collapse
|
26
|
Kazemi Z, Rudbari HA, Mirkhani V, Sahihi M, Moghadam M, Tangestaninejad S, Mohammadpoor-Baltork I. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.04.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Wang L, Liu S, Liang W, Li D, Yang J, He Y. Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate. J Colloid Interface Sci 2015; 448:257-64. [DOI: 10.1016/j.jcis.2015.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
|
28
|
Xie J, Chen D, Wu Q, Wang J, Qiao H. Spectroscopic analyses on interaction of melamine, cyanuric acid and uric acid with DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:714-721. [PMID: 25988817 DOI: 10.1016/j.saa.2015.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/10/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
In this work, the interaction of DNA with melamine (MEL), cyanuric acid (CYA) and uric acid (UA) were studied, respectively, by means of UV-vis, fluorescence, circular dichroism (CD) spectroscopy, viscosity and gel electrophoresis methods. The fluorescence quenching was used to study the interaction models of MEL, CYA and UA with DNA, respectively, and the bimolecular quenching constant (Kq), apparent quenching constant (Ksv), effective binding constant (KA) and corresponding dissociation constant (KD) and binding site number (n) were calculated by adopting Stern-Volmer, Lineweaver-Burk and Double logarithm equations. The results show that MEL, CYA and UA are all able to markedly bind to DNA, and the binding strength order is DNA-UA>DNA-CYA>DNA-MEL. It is wished that these researches would facilitate the understanding of the formation of kidney stones and gout in the body after ingesting excess MEL.
Collapse
Affiliation(s)
- Jinhui Xie
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Dandan Chen
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Qiong Wu
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Heng Qiao
- College of Environment, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|
29
|
Shahabadi N, Falsafi M, Moradi Fili S. Synthesis, characterization, molecular modeling, and DNA interaction studies of a Cu(II) complex containing drug of chronic hepatitis B: adefovir dipivoxil. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1013945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Nahid Shahabadi
- Faculty of Science, Department of Chemistry, Razi University, Kermanshah, Iran
| | - Monireh Falsafi
- Faculty of Science, Department of Chemistry, Razi University, Kermanshah, Iran
| | - Soraya Moradi Fili
- Faculty of Science, Department of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|