1
|
High-performance enzyme-free glucose and hydrogen peroxide sensors based on bimetallic AuCu nanoparticles coupled with multi-walled carbon nanotubes. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Wang A, Zhou Y, Chen Y, Zhou J, You X, Liu H, Liu Y, Ding P, Qi Y, Liang C, Zhu X, Zhang Y, Liu E, Zhang G. Electrochemical immunosensor for ultrasensitive detection of human papillomaviruse type 16 L1 protein based on Ag@AuNPs-GO/SPA. Anal Biochem 2023; 660:114953. [PMID: 36243135 DOI: 10.1016/j.ab.2022.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Human papillomaviruse type 16 (HPV16) is a high-risk serotype. As the main protective antigen protein, L1 protein is also the target protein for diagnosis. A simple label free electrochemical immunosensor (ECIS) was fabricated for ultrasensitive detection of HPV16 L1 protein in this work. Quasi-spherical Ag@Au core-shell nanoparticles on graphene oxide (Ag@AuNPs-GO) was developed as current response amplifier and characterized by UV-Vis Spectroscopy, Transmission Electron Microscopy and energy dispersive X-ray spectroscopy. Staphylococcal protein A was decorated on the modified electrode and utilized to immobilized the Fc portion of the monoclonal antibody specific for HPV16 L1 protein. Cyclic Voltammetry, Differential Pulse Voltammetry and Electrochemical Impedance Spectroscopy were used to verify the electrochemical performance and interfacial kinetic property. The increased concentration of HPV16 L1 protein led to slow electron transport and linearly decreased differential pulse voltammetry peak current with a detection limit of 0.002 ng mL-1 and a wide linear relationship in the range of 0.005-400 ng mL-1at a regression coefficient (R2) of 0.9948. Furthermore, this ECIS demonstrated acceptable accuracy with good reproducibility, stability and selectivity, suggesting a promising immunological strategy for HPV typing and early screening.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yiting Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Xiaojuan You
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Ying Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Enping Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450000, China; Longhu Laboratory, Zhengzhou, 451100, China; School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Cui Y, Xu L, Li H, Wang X, Sun F, Wang H, Guo X, Zhang Y, Gao H, An Q. Flexible nano-cloth-like Ag cluster@rGO with ultrahigh SERS sensitivity for capture-optimization-detection due to effective molecule-substrate interactions. NANOSCALE 2022; 14:12313-12321. [PMID: 35968803 DOI: 10.1039/d2nr02033e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a rapid and promising detection technique for trace molecules. A central goal of research in this area is to achieve the highly sensitive detection of molecules built on a systematic understanding of enhancement mechanisms. Herein, we develop a Ag cluster@rGO composite nanostructure, which utilizes strong molecular adsorption to achieve ultrahigh SERS sensitivity. Ag clusters are prepared without additional reducing agents, leaving a low carbon footprint in the fabrication process. Finite-difference time-domain (FDTD) simulations show strong electromagnetic field enhancements generated at the edges and interstices of Ag clusters due to the specificity of their structure. Density Functional Theory (DFT) calculations show that the HOMO-LUMO energy gap value is significantly reduced when Ag cluster@rGO forms a composite system with the target molecule, which enables efficient charge transfer between the substrate and molecules, resulting in charge transfer enhancement. A detection limit of 10-14 M using our substrate can be achieved for the environmental pollutant dye rhodamine 6G (Rh6G). The detection limits of bisphenol A (BPA) and its derivatives reach nanomolar levels with good signal stability. More importantly, we demonstrate the ability to rapidly screen BPA migration in Chinese Baijiu. Our SERS platform can be further developed for environmental pollution control and food safety.
Collapse
Affiliation(s)
- Yanying Cui
- State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Linan Xu
- College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| | - Xuan Wang
- State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Fuwei Sun
- Chemistry department, Tsinghua University, 100084, P. R. China
| | - Huan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| | - Xinguang Guo
- China National Institute of Food and Fermentation Industries Co, Ltd, Beijing 100015, China.
| | - Yihe Zhang
- State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Hongbo Gao
- China National Institute of Food and Fermentation Industries Co, Ltd, Beijing 100015, China.
| | - Qi An
- State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
4
|
Caglar A, Avci Hansu T, Sahin O, Kivrak H. Fabrication of novel palladium-platinum based graphene/ITO electrodes and third metal addition effect through the glucose electrooxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Kannan P, Maduraiveeran G. Bimetallic Nanomaterials-Based Electrochemical Biosensor Platforms for Clinical Applications. MICROMACHINES 2021; 13:mi13010076. [PMID: 35056240 PMCID: PMC8779820 DOI: 10.3390/mi13010076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022]
Abstract
Diabetes is a foremost health issue that results in ~4 million deaths every year and ~170 million people suffering globally. Though there is no treatment for diabetes yet, the blood glucose level of diabetic patients should be checked closely to avoid further problems. Screening glucose in blood has become a vital requirement, and thus the fabrication of advanced and sensitive blood sugar detection methodologies for clinical analysis and individual care. Bimetallic nanoparticles (BMNPs) are nanosized structures that are of rising interest in many clinical applications. Although their fabrication shares characteristics with physicochemical methodologies for the synthesis of corresponding mono-metallic counterparts, they can display several interesting new properties and applications as a significance of the synergetic effect between their two components. These applications can be as diverse as clinical diagnostics, anti-bacterial/anti-cancer treatments or biological imaging analyses, and drug delivery. However, the exploitation of BMNPs in such fields has received a small amount of attention predominantly due to the vital lack of understanding and concerns mainly on the usage of other nanostructured materials, such as stability and bio-degradability over extended-time, ability to form clusters, chemical reactivity, and biocompatibility. In this review article, a close look at bimetallic nanomaterial based glucose biosensing approaches is discussed, concentrating on their clinical applications as detection of glucose in various real sample sources, showing substantial development of their features related to corresponding monometallic counterparts and other existing used nanomaterials for clinical applications.
Collapse
Affiliation(s)
- Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
- Correspondence: (P.K.); (G.M.); Tel.: +86-19857386580 (P.K.); +91-9843911472 (G.M.)
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
- Correspondence: (P.K.); (G.M.); Tel.: +86-19857386580 (P.K.); +91-9843911472 (G.M.)
| |
Collapse
|
6
|
Xie Y, Wang N, Sun X, Chu H, Wang Y, Hu X. Triple-signaling amplification strategy based electrochemical sensor design: boosting synergistic catalysis in metal-metalloporphyrin-covalent organic frameworks for sensitive bisphenol A detection. Analyst 2021; 146:4585-4594. [PMID: 34159957 DOI: 10.1039/d1an00665g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A covalent organic framework (COF) is a promising type of porous material with customizable surface characteristics. Confining multiple catalytic units within a mesoporous COF can generate abundant active sites and improve the catalytic performance. In this work, a COF with both metalloporphyrin and a metal nanoparticle complex denoted as hemin/TAPB-DMTP-COF/AuNPs (TAPB: 1,3,5-tris(4-amino-phenyl)benzene, DMTP: 2,5-dimethoxyterephaldehyde, AuNPs: Au nanoparticles) has been successfully fabricated through a hierarchical encapsulation method. The as-synthesized composite was then employed to construct an electrochemical sensing platform for the efficient detection of bisphenol A (BPA). Under the optimal conditions, the hemin/TAPB-DMTP-COF/AuNP sensor presented a linear range of 0.01-3 μmol L-1 and a low detection limit of 3.5 nmol L-1. The satisfactory signal amplification is based on a triple-signaling amplification strategy due to the abundant Fe3+ sites of Fe-porphyrin, high conductivity of AuNPs and a large specific surface area of the TAPB-DMTP-COF. The proposed method was used to measure the content of BPA in different water samples with a satisfactory recovery from 95.5 to 104.0%, suggesting the great potential of the sensor in practical applications.
Collapse
Affiliation(s)
- Yao Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, 200240, China
| | - Xin Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Huacong Chu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
7
|
Xie Y, Chen Y, Sun X, Wang Y, Wang Y. Conducting polymer engineered covalent organic framework as a novel electrochemical amplifier for ultrasensitive detection of acetaminophen. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Sun X, Wang N, Xie Y, Chu H, Wang Y, Wang Y. In-situ anchoring bimetallic nanoparticles on covalent organic framework as an ultrasensitive electrochemical sensor for levodopa detection. Talanta 2021; 225:122072. [DOI: 10.1016/j.talanta.2020.122072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/26/2022]
|
9
|
Glucose-Oxygen Biofuel Cell with Biotic and Abiotic Catalysts: Experimental Research and Mathematical Modeling. ENERGIES 2020. [DOI: 10.3390/en13215630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The demand for alternative sources of clean, sustainable, and renewable energy has been a focus of research around the world for the past few decades. Microbial/enzymatic biofuel cells are one of the popular technologies for generating electricity from organic substrates. Currently, one of the promising fuel options is based on glucose due to its multiple advantages: high energy intensity, environmental friendliness, low cost, etc. The effectiveness of biofuel cells is largely determined by the activity of biocatalytic systems applied to accelerate electrode reactions. For this work with aerobic granular sludge as a basis, a nitrogen-fixing community of microorganisms has been selected. The microorganisms were immobilized on a carbon material (graphite foam, carbon nanotubes). The bioanode was developed from a selected biological material. A membraneless biofuel cell glucose/oxygen, with abiotic metal catalysts and biocatalysts based on a microorganism community and enzymes, has been developed. Using methods of laboratory electrochemical studies and mathematical modeling, the physicochemical phenomena and processes occurring in the cell has been studied. The mathematical model includes equations for the kinetics of electrochemical reactions and the growth of microbiological population, the material balance of the components, and charge balance. The results of calculations of the distribution of component concentrations over the thickness of the active layer and over time are presented. The data obtained from the model calculations correspond to the experimental ones. Optimization for fuel concentration has been carried out.
Collapse
|
10
|
Rahmani K, Habibi B. Electrofabrication of the Ternary NiCuFe Alloy Nanoparticles/ERGO Nanocomposite: Effective Electrooxidation of the Glucose and Glycerol in Alkaline Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202001561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kaveh Rahmani
- Electroanalytical Chemistry LaboratoryDepartment of Chemistry, Faculty of SciencesAzarbaijan Shahid Madani University Tabriz 53714-161 Iran
| | - Biuck Habibi
- Electroanalytical Chemistry LaboratoryDepartment of Chemistry, Faculty of SciencesAzarbaijan Shahid Madani University Tabriz 53714-161 Iran
| |
Collapse
|
11
|
Electrochemical Preparation of Polyaniline- Supported Cu-CuO Core-Shell on 316L Stainless Steel Electrodes for Nonenzymatic Glucose Sensor. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6056919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this article, we reported the elaboration of a nonenzymatic glucose sensor based on the polyaniline-supported Cu-CuO core-shell structure prepared on the 316L stainless steel electrode by electrochemical methods. In the first step, polyaniline (PANI) film was electrodeposited on the 316L substrate from a solution of 0.1 M aniline and 0.5 M sulfuric acid in absolute ethanol by the cyclic voltammetry (CV) method. In the second step, the copper particles were electrodeposited on the PANI film from CuCl2·2H2O 0.01 M precursor prepared in a KCl 0.1 M solution by the CV method. In the third step, Cu particles were partially oxidized to CuO by the CV method in a NaOH 0.1 M electrolyte to form a Cu-CuO core-shell structure supported on the PANI film. The as-prepared electrode (Cu-CuO/PANI/316L) was used to detect glucose in a NaOH 0.1 M solution. The Cu-CuO/PANI/316L sensor exhibited a linear range of 0.1–5 mM (R2 = 0.995) with a detection limit of 0.1 mM (S/N = 3) and high sensitivity of (25.71 mA·mM−1·cm−2). In addition, no significant interference was observed from sucrose, maltose, lactose, and ascorbic acid. The results showed that the polyaniline-supported Cu-CuO core-shell structure has the potential to be applied as an electrode material for the nonenzymatic glucose sensor.
Collapse
|
12
|
Gerent GG, Spinelli A. Ag-Au core-partial shell bimetallic nanoparticles applied in electrochemical determination of the potential endocrine disruptor oryzalin. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Hasnat MA, Mumtarin Z, Rahman MM. Electrocatalytic reduction of hydroxylamine on copper immobilized platinum surface: Heterogeneous kinetics and sensing performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Arvinte A, Crudu IA, Doroftei F, Timpu D, Pinteala M. Electrochemical codeposition of silver-gold nanoparticles on CNT-based electrode and their performance in electrocatalysis of dopamine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Liu JP, Zhang HY, Wang J. Synthesis of PPy/BioHAP/AgHg Microstructures and Their Applications in Non-enzymatic Sensing of Glucose. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-1012-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Tsang CHA, Hui K, Hui K. Electrooxidation of glucose by binder-free bimetallic Pd1Ptx/graphene aerogel/nickel foam composite electrodes with low metal loading in basic medium. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Thanh TD, Balamurugan J, Hien HV, Kim NH, Lee JH. A novel sensitive sensor for serotonin based on high-quality of AuAg nanoalloy encapsulated graphene electrocatalyst. Biosens Bioelectron 2017; 96:186-193. [DOI: 10.1016/j.bios.2017.05.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/26/2017] [Accepted: 05/05/2017] [Indexed: 12/01/2022]
|
18
|
Lead underpotential deposition for the surface characterization of silver ad-atom modified gold electrocatalysts for glucose oxidation. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Cai T, Gao Y, Yan J, Wu Y, Di J. Visual detection of glucose using triangular silver nanoplates and gold nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra00593h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A sensitive spectrophotometric detection of glucose based on triangular silver nanoplates (Ag TNPs) coupled with gold nanoparticles (Au NPs) was carried out.
Collapse
Affiliation(s)
- Tuanjie Cai
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Yan Gao
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Jilin Yan
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Ying Wu
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Junwei Di
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| |
Collapse
|
20
|
Guiet A, Unmüssig T, Göbel C, Vainio U, Wollgarten M, Driess M, Schlaad H, Polte J, Fischer A. Yolk@Shell Nanoarchitectures with Bimetallic Nanocores-Synthesis and Electrocatalytic Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28019-28029. [PMID: 27556179 DOI: 10.1021/acsami.6b06595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the present paper, we demonstrate a versatile approach for the one-pot synthesis of metal oxide yolk@shell nanostructures filled with bimetallic nanocores. This novel approach is based on the principles of hydrophobic nanoreactor soft-templating and is exemplified for the synthesis of various AgAuNP@tin-rich ITO (AgAu@ITOTR) yolk@shell nanomaterials. Hydrophobic nanoreactor soft-templating thereby takes advantage of polystyrene-block-poly(4-vinylpiridine) inverse micelles as two-compartment nanoreactor template, in which the core and the shell of the micelles serve as metal and metal oxide precursor reservoir, respectively. The composition, size and number of AuAg bimetallic nanoparticles incorporated within the ITOTR yolk@shell can easily be tuned. The conductivity of the ITOTR shell and the bimetallic composition of the AuAg nanoparticles, the as-synthesized AuAgNP@ITOTR yolk@shell materials could be used as efficient electrocatalysts for electrochemical glucose oxidation with improved onset potential when compared to their gold counterpart.
Collapse
Affiliation(s)
- Amandine Guiet
- Department of Chemistry, Technische Universität Berlin , Straße des 17. Juni 135, Sek TK1, 10623 Berlin, Germany
- Université Bretagne Loire, Université du Maine, Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283 , Avenue O. Messiaen, 72085 Le Mans, France
| | - Tobias Unmüssig
- Freiburger Materialforschungszentrum, Albert-Ludwigs-Universität Freiburg , Stefan-Meier-Straße 19, 79104 Freiburg, Germany
- Institute of Inorganic and Analytical Chemistry, Albert-Ludwigs-University Freiburg , Albertstraße 21, 79104 Freiburg, Germany
| | - Caren Göbel
- Department of Chemistry, Technische Universität Berlin , Straße des 17. Juni 135, Sek TK1, 10623 Berlin, Germany
| | - Ulla Vainio
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht , Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Markus Wollgarten
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Matthias Driess
- Department of Chemistry - Metalorganics and Inorganic Materials, Technische Universität Berlin , Straße des 17. Juni 135, Sek C2, 10623 Berlin, Germany
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam , Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Jörg Polte
- Institute of Chemistry, Humboldt University Berlin , Brook-Taylor Strasse 2, 12489 Berlin, Germany
| | - Anna Fischer
- Department of Chemistry, Technische Universität Berlin , Straße des 17. Juni 135, Sek TK1, 10623 Berlin, Germany
- Université Bretagne Loire, Université du Maine, Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283 , Avenue O. Messiaen, 72085 Le Mans, France
- Freiburger Materialforschungszentrum, Albert-Ludwigs-Universität Freiburg , Stefan-Meier-Straße 19, 79104 Freiburg, Germany
- Institute of Inorganic and Analytical Chemistry, Albert-Ludwigs-University Freiburg , Albertstraße 21, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Karabiberoğlu ŞU, Koçak ÇC, Koçak S, Dursun Z. Polymer Film Supported Bimetallic Au-Ag Catalysts for Electrocatalytic Oxidation of Ammonia Borane in Alkaline Media. NANO-MICRO LETTERS 2016; 8:358-370. [PMID: 30460294 PMCID: PMC6223689 DOI: 10.1007/s40820-016-0095-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/27/2016] [Indexed: 05/27/2023]
Abstract
ABSTRACT Ammonia borane is widely used in most areas including fuel cell applications. The present paper describes electrochemical behavior of ammonia borane in alkaline media on the poly(p-aminophenol) film modified with Au and Ag bimetallic nanoparticles. The glassy carbon electrode was firstly covered with polymeric film electrochemically and then, Au, Ag, and Au-Ag nanoparticles were deposited on the polymeric film, respectively. The surface morphology and chemical composition of these electrodes were examined by scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. It was found that alloyed Au-Ag bimetallic nanoparticles are formed. Electrochemical measurements indicate that the developed electrode modified by Au-Ag bimetallic nanoparticles exhibit the highest electrocatalytic activity for ammonia borane oxidation in alkaline media. The rotating disk electrode voltammetry demonstrates that the developed electrode can catalyze almost six-electron oxidation pathway of ammonia borane. Our results may be attractive for anode materials of ammonia borane fuel cells under alkaline conditions. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
| | - Çağrı Ceylan Koçak
- Occupational Health and Safety Department, Bergama Vocational School, Dokuz Eylul University, Izmir, Turkey
| | - Süleyman Koçak
- Department of Chemistry, Science and Art Faculty, Celal Bayar University, 45040 Manisa, Turkey
| | - Zekerya Dursun
- Department of Chemistry, Science Faculty, Ege University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
22
|
Direct electrodeposition of highly ordered gold nanotube arrays for use in non-enzymatic amperometric sensing of glucose. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1835-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Gu Y, Yang H, Li B, Mao J, An Y. A ternary nanooxide NiO-TiO2-ZrO2/SO42− as efficient solid superacid catalysts for electro-oxidation of glucose. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.02.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
A ternary nanocatalyst of Ni/Cr/Co oxides with high activity and stability for alkaline glucose electrooxidation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Yang S, Liu L, Wang G, Li G, Deng D, Qu L. One-pot synthesis of Mn3O4 nanoparticles decorated with nitrogen-doped reduced graphene oxide for sensitive nonenzymatic glucose sensing. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.07.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Smith SR, Seenath R, Kulak MR, Lipkowski J. Characterization of a Self-Assembled Monolayer of 1-Thio-β-D-Glucose with Electrochemical Surface Enhanced Raman Spectroscopy Using a Nanoparticle Modified Gold Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10076-10086. [PMID: 26313341 DOI: 10.1021/acs.langmuir.5b02767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Preparation of a nanoparticle modified gold substrate designed for characterization of hydrophilic self-assembled monolayers (SAMs) of 1-thio-β-D-glucose (TG) with electrochemical surface-enhanced Raman spectroscopy (EC-SERS) is presented. Citrate stabilized gold nanoparticles were deposited on a polycrystalline gold electrode and subjected to an electrochemical desorption procedure to completely remove all traces of adsorbed citrate. Complete desorption of citrate was confirmed by recording cyclic voltammetry curves and SERS spectra. The citrate-free nanoparticle modified gold electrode was then incubated in a 1 mg mL(-1) aqueous solution of TG for 16 h prior to being characterized by EC-SERS. The SERS spectra confirmed that at potentials more negative than -0.10 V vs SCE thioglucose forms a monolayer in which the majority of the molecules preserve their lactol ring structure and only a small fraction of molecules appear to be oxidized. At potentials more positive than -0.10 V, the oxidation of TG molecules becomes prominent, and at potentials more positive than 0.20 V vs SCE, the monolayer of TG consists chiefly of oxidized product. The SERS spectra collected in the double layer region suggest the SAM of TG is well hydrated and hence can be used for hydrophilic modifications of a gold surface.
Collapse
Affiliation(s)
- Scott R Smith
- Department of Chemistry, University of Guelph , Guelph ON, Canada N1G 2W1
| | - Ryan Seenath
- Department of Chemistry, University of Guelph , Guelph ON, Canada N1G 2W1
| | - Monika R Kulak
- Department of Chemistry, University of Guelph , Guelph ON, Canada N1G 2W1
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph , Guelph ON, Canada N1G 2W1
| |
Collapse
|