1
|
Li P, Zhao R, Chen H, Wang H, Wei P, Huang H, Liu Q, Li T, Shi X, Zhang Y, Liu M, Sun X. Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805103. [PMID: 30773809 DOI: 10.1002/smll.201805103] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Indexed: 05/06/2023]
Abstract
Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water-oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild-pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild-pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions.
Collapse
Affiliation(s)
- Peipei Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Runbo Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hongyu Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Huanbo Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Peipei Wei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hong Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qian Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xifeng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| |
Collapse
|
2
|
Liang Z, Ge X, Liu J. An amorphous FeNiO x thin film obtained by anodic electrodeposition as an electrocatalyst toward the oxygen evolution reaction. NEW J CHEM 2019. [DOI: 10.1039/c9nj04903g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novelty of the work: amorphous FeNiOx was fabricated via anodic electrochemical deposition as an efficient catalyst for OER.
Collapse
Affiliation(s)
- Zihao Liang
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| | - Xingbo Ge
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| | - Jia Liu
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| |
Collapse
|
3
|
Liu G, Yao R, Zhao Y, Wang M, Li N, Li Y, Bo X, Li J, Zhao C. Encapsulation of Ni/Fe 3O 4 heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation. NANOSCALE 2018; 10:3997-4003. [PMID: 29424841 DOI: 10.1039/c7nr09446a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The rational modulation of composition and structure is critical for the development of robust and efficient oxygen evolution reaction (OER) catalysts for water splitting. In this study, an onion-like N-doped carbon nanorods hybrid (denoted as ONC) with encapsulated Ni/Fe3O4 heterostructures has been fabricated by the pyrolysis of an NiFe-based coordination polymer under a N2 atmosphere. The nanorod-like morphology is transferred from the polymer to the hybrids and generates ONC nanolayers encapsulated with core-shell Ni/Fe3O4 nanostructures. The synergistic effects between the ONC layers and the encapsulated Ni/Fe3O4 heterostructures result in high electronic conductivity due to the nitrogen-doped carbon with an appropriate level of defects and enlarged electrochemical surface area due to the well-defined mesoporous morphology. Compared with Ni@ONC, Fe3O4@ONC, NiFe2O4 and commercial RuO2 electrocatalysts, the as-prepared Ni/Fe3O4@ONC exhibits extraordinary electrocatalytic activity for water oxidation with an overpotential of merely 296 mV at 10 mA cm-2 and a small Tafel slope of 61 mV dec-1. This Ni/Fe3O4@ONC OER catalyst highlights the great potential of integrating hetero-composite nanocatalysts with hetero-atom doped nanocarbon supports for the development of high-performance electrocatalysts for renewable energy applications.
Collapse
Affiliation(s)
- Guang Liu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Research Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|