1
|
Li H, Xiao N, Jiang M, Long J, Li Z, Zhu Z. Advances of Transition Metal-Based Electrochemical Non-enzymatic Glucose Sensors for Glucose Analysis: A Review. Crit Rev Anal Chem 2024:1-37. [PMID: 38635407 DOI: 10.1080/10408347.2024.2339955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Glucose concentration is a crucial parameter for assessing human health. Over recent years, non-enzymatic electrochemical glucose sensors have drawn considerable attention due to their substantial progress. This review explores the common mechanism behind the transition metal-based electrocatalytic oxidation of glucose molecules through classical electrocatalytic frameworks like the Pletcher model and the Hydrous Oxide-Adatom Mediator model (IHOAM), as well as the redox reactions at the transition metal centers. It further compiles the electrochemical characterization techniques, associated formulas, and their ensuing conclusions pertinent to transition metal-based non-enzymatic electrochemical glucose sensors. Subsequently, the review covers the latest advancements in the field of transition metal-based active materials and support materials used in non-enzymatic electrochemical glucose sensors in the last decade (2014-2023). Additionally, it presents a comprehensive classification of representative studies according to the active metal catalysts components involved.
Collapse
Affiliation(s)
- Haotian Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Nan Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengyi Jiang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjun Long
- Danyang Development Zone, Jiangsu Yuwell-POCT Biological Technology Co., Ltd, Danyang, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Hossain F, Doyle S, Serpe MJ. Method for Glucose and Fructose Quantitation in Beverages Using an Off-the-Shelf Glucose Test Strip. ACS Sens 2024; 9:971-978. [PMID: 38346394 DOI: 10.1021/acssensors.3c02512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
A method was developed for quantifying both glucose and fructose in solutions and grape juice using commercially available glucose test strips connected to a mini-potentiostat. The first step of this sensing approach involved exposing the sample solution to an Accu Chek Aviva glucose test strip, which allowed for the direct quantitation of glucose. To quantify fructose, the solution was exposed to glucose isomerase, which led to the conversion of glucose to fructose and vice versa until an equilibrium was reached. Once equilibrium was reached, the solution was exposed to another glucose test strip; the signal obtained was shown to be related to the total amounts of glucose and fructose in solution. Finally, fructose was quantified by subtracting the glucose concentration (from the initial measurement) from the total concentration of glucose and fructose (from the second measurement after the reaction with glucose isomerase). The method yielded a limit of detection of 0.047 g L-1 for glucose and 0.49 g L-1 for fructose. Importantly, this method was shown to work well for analyzing glucose and fructose concentration in grape juice, which contains >60 g L-1 glucose and fructose. Since the ratio of glucose and fructose concentration in ripe grapes is close to 1, this method can be used to aid in the determination of grape ripeness to guide harvesting times.
Collapse
Affiliation(s)
- Faisal Hossain
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram 4331, Bangladesh
| | - Shea Doyle
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
3
|
Dong Y, Zhang Y, Xu Y. Corrosion-assisted in situ growth of NiCoFe-layered double hydroxides on Fe foam for sensitive non-enzymatic glucose detection. Dalton Trans 2023; 52:16661-16669. [PMID: 37910402 DOI: 10.1039/d3dt02622a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Because of their remarkable qualities including changeable chemical composition, good redox characteristics, and ease of manufacture, non-enzymatic glucose sensors based on metallic hydroxides have attracted much interest. However, enhancement of their peroxidase-like catalytic activity is challenging due to their poor substrate affinity and low electrical conductivity, affecting electron transfer. Herein, a three-dimensional hierarchical architecture of Ni/Co-decorated-Fe layered double hydroxide (NiCoFe-LDH) was straightforwardly constructed on Fe foam (FF) via a feasible corrosion strategy, and the non-enzymatic glucose sensing properties of the NiCoFe-LDH/FF electrode were investigated. In the linear detection range of 0.010-0.1 mM, the electrode exhibits an extreme sensitivity of 5717 μA mM-1 cm-2 with a low threshold for glucose determination of 2.61 μM (S/N = 3) and a short reaction time (∼2 s), which is ascribed to its specific intertwined nanosheet-like morphology with rich electron transfer passages that enhance conductivity and improve the accessibility to more active catalytic sites for glucose oxidation. Moreover, the electrode shows excellent selectivity, good stability, and promising practicality for glucose detection in actual serum samples. These results indicate that the feasible corrosion approach towards the simple synthesis of trimetallic layered double hydroxide electrodes results in improved affinity and stability, holding new prospects for achieving reliable, cost-efficient, and eco-friendly non-enzymatic glucose detection.
Collapse
Affiliation(s)
- Yi Dong
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
| | - Yuchi Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
| |
Collapse
|
4
|
Preparation of three dimensional Cu2O/Au/GO hybrid electrodes and its application as a non-enzymatic glucose sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Liu W, Zhao X, Dai Y, Qi Y. Study on the oriented self-assembly of cuprous oxide micro-nano cubes and its application as a non-enzymatic glucose sensor. Colloids Surf B Biointerfaces 2022; 211:112317. [PMID: 35038655 DOI: 10.1016/j.colsurfb.2021.112317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
Herein, cuprous oxide (Cu2O) micro-nano cubes were successfully synthesized via a seed-medium process. It is worth noting that the microcubes were formed by oriented self-assembly of 2 × 2 × 2 nanocubes. The oriented self-assembly process can be effective controlled by simply adjusting the concentration of reactants. What's more, the obtained samples were applied for non-enzymatic glucose detection and exhibited excellent performance. The Cu2O nanocubes obtained at the highest concentration exhibited the highest sensitivity (2864 μAmM-1cm-2), while the Cu2O microcubes obtained at the lowest concentration shared the widest linear range (up to 10.65 mM) and lowest limit of detection (LOD, 0.87 μΜ). The acceptable anti-interference ability, excellent stability together with the practical application ability make our obtained electrodes a new strategy for monitoring glucose in biological and food samples.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xingming Zhao
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Yuxiang Dai
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China.
| | - Yang Qi
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China.
| |
Collapse
|
6
|
Binder free 3D core-shell NiFe layered double hydroxide (LDH) nanosheets (NSs) supported on Cu foam as a highly efficient non-enzymatic glucose sensor. J Colloid Interface Sci 2022; 615:865-875. [PMID: 35182856 DOI: 10.1016/j.jcis.2022.02.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 01/16/2023]
Abstract
Rational design with fine-tuning of the electrocatalyst material is vital for achieving the desired sensitivity, selectivity, and stability for an electrochemical sensor. In this study, a three-dimensional (3D) hierarchical core-shell catalyst was employed as a self-standing, binder-free electrode for non-enzymatic glucose sensing. The catalyst was prepared by decorating the shell of NiFe layered double hydroxide (LDH) nanosheets (NSs) on the core of Cu nanowires (NWs) grown on a Cu foam support. The optimized 3D core-shell Cu@NiFe LDH sensor demonstrated higher sensitivity (7.88 mA mM-1cm-2), lower limit of detection (0.10 µM) and wider linear range (1 µM to 0.9 mM) in glucose sensing with a low working potential (0.4 V). The applied sensor also showed excellent stability, reproducibility, interference ability as well as practicability in real environment. The detection of real samples further suggests its great feasibility for practical applications. The superior electrocatalytic performance is collectively ascribed to the excellent electro-conductivity of the Cu substrate, the distinct self-standing 3D porous nanostructure, the ultrathin homogenous architecture, and the appropriate loading amount of NiFe LDH NSs. This study then provides a non-enzymatic glucose sensor with 3D Cu@NiFe LDH electrode for ultrahigh sensitivity and stability.
Collapse
|
7
|
Aun TT, Salleh NM, Ali UFM, Manan NSA. Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. Crit Rev Anal Chem 2021; 53:537-593. [PMID: 34477020 DOI: 10.1080/10408347.2021.1967720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
Collapse
Affiliation(s)
- Tan Tiek Aun
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noordini Mohamad Salleh
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Science, Department of Chemistry, Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umi Fazara Md Ali
- Chemical Engineering Programme, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau, Malaysia
| | - Ninie Suhana Abdul Manan
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Casulli MA, Taurino I, Hashimoto T, Carrara S, Hayashita T. Electrochemical Assay for Extremely Selective Recognition of Fructose Based on 4-Ferrocene-Phenylboronic Acid Probe and β-Cyclodextrins Supramolecular Complex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003359. [PMID: 33035400 DOI: 10.1002/smll.202003359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The aim of the present paper is to highlight a novel electrochemical assay for an extremely-selective detection of fructose thanks to the use of a supramolecular complex between β-cyclodextrins (β-CDs) and a chemically modified ferrocene with boronic acid named 4-Fc-PB/natural-β-CDs. Another kind of β-CDs, the 4-Fc-PB/3-phenylboronic-β-CDs, is proposed for the detection of glucose. The novel electrochemical probe is fully characterized by 1 H nuclear magnetic resonance, mass spectroscopy, and elemental analysis, while the superior electrochemical performance is assessed in terms of sensitivity and detection limit. The novelty of the present work consists in the role of CDs that for the first time are employed in electrochemistry with a unique detection mechanism based on specific chemical interactions with the target molecule by the introduction of proper binding groups. A highly selective detection of fructose is obtained and it is believed that the proposed mechanism of detection represents a new way to electrochemically sense other molecules by varying the combination of specific groups of the supramolecular complex. The findings are of impactful importance since a quick, easy, cheap, and extremely selective detection of fructose is not yet available in the market, here achieved by using electrochemical methods which are a very growing field.
Collapse
Affiliation(s)
- Maria Antonietta Casulli
- Department of Materials and Life Sciences, Sophia University Yotsuya Campus, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Irene Taurino
- Integrated System Laboratory (LSI), INF 338 (Bâtiment INF), Station 14, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Sophia University Yotsuya Campus, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Sandro Carrara
- Integrated System Laboratory (LSI), INF 338 (Bâtiment INF), Station 14, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Sophia University Yotsuya Campus, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| |
Collapse
|
9
|
Chang L, Liu Y, Tian R, Meng L, Zhang H, Gao Y, Zhang F, Ruan X, Zhu B, Li J, Yi X, Hui G. Rapid glucose detection using graphene oxide modified foam nickel electrode with optimized basic solution. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1812638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Liyang Chang
- Renal Department, Hangzhou, Zhejiang Province, PRC
| | - Yi Liu
- Department of Computer Science and Technology, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Zhejiang A&F University, Hangzhou, PRC
| | | | - Lu Meng
- Department of Nursing, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, PRC
| | | | - Yuanyuan Gao
- Department of Computer Science and Technology, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Zhejiang A&F University, Hangzhou, PRC
| | - Feixiang Zhang
- Department of Computer Science and Technology, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Zhejiang A&F University, Hangzhou, PRC
| | - Xiaorong Ruan
- Department of Computer Science and Technology, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Zhejiang A&F University, Hangzhou, PRC
| | - Bowei Zhu
- Department of Computer Science and Technology, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Zhejiang A&F University, Hangzhou, PRC
| | - Jian Li
- Department of Computer Science and Technology, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Zhejiang A&F University, Hangzhou, PRC
| | - Xiaomei Yi
- Department of Computer Science and Technology, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Zhejiang A&F University, Hangzhou, PRC
| | - Guohua Hui
- Department of Computer Science and Technology, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of China Ministry of Forestry, Key Laboratory of Forestry Intelligent Monitoring of Zhejiang Province, Zhejiang A&F University, Hangzhou, PRC
| |
Collapse
|
10
|
Tang X, Yu Z. Rapid evaluation of chicken meat freshness using gas sensor array and signal analysis considering total volatile basic nitrogen. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1716797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xuxiang Tang
- School of Management and E-business, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Zhi Yu
- Center of Networking and Information, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
11
|
A robust host-guest interaction controlled probe immobilization strategy for the ultrasensitive detection of HBV DNA using hollow HP5-Au/CoS nanobox as biosensing platform. Biosens Bioelectron 2020; 153:112051. [PMID: 32056664 DOI: 10.1016/j.bios.2020.112051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/15/2023]
Abstract
The combination of supramolecular chemistry and nanotechnology has potentially applied in the construction of biosensors, and thus improves the analytical performance and robustness of electron devices. Herein, a new sandwich-type DNA sensor was constructed for ultrasensitive determination of hepatitis B virus (HBV) DNA, a recognized marker for chronic hepatitis B. The water-soluble pillar[5]arene stabilized Pd NPs combined with reduced graphene oxide nanosheet (WP5-Pd/RGO) was synthesized and employed as supporting material for the modification of electrode surface. The probe DNA was immobilized onto the electrode surface through a new strategy based on the host-guest interaction between WP5 and methylene blue labeled DNA (MB-DNA). Moreover, MOF-derived cobalt sulfide nanobox was prepared to anchor the hydroxylatopillar[5]arene stabilized Au NPs (HP5-Au/CoS), which had superior electrocatalytic performance towards H2O2 reduction to achieve signal amplification. Under the optimized conditions, the proposed sensor displayed a linear relationship between amperometric currents and the logarithm of tDNA solution from 1 × 10-15 mol/L to 1 × 10-9 mol/L, and a low detection limit of 0.32 fmol/L. What's more, the DNA sensor had remarkable behaviors of stability, reproducibility, specificity, and accuracy, which provided a potential and promising prospect for clinical diagnosis and analysis.
Collapse
|
12
|
Liu W, Chai G, Zhang J, Wang M, Dai Y, Yang Q. Preparation of Cu2O nanocubes with different sizes and rough surfaces by a seed-mediated self-assembly process and their application as a non-enzymatic glucose sensor. NEW J CHEM 2020. [DOI: 10.1039/d0nj02763d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, ultrafine and uniform cuprous oxide (Cu2O) nanocubes with different sizes and rough surfaces were prepared via a seed-mediated process.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Guochun Chai
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Jian Zhang
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Mingguang Wang
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Yuxiang Dai
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Qi Yang
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| |
Collapse
|
13
|
Sasya M, Devi KSS, Babu JK, Balaguru Rayappan JB, Krishnan UM. Metabolic Syndrome-An Emerging Constellation of Risk Factors: Electrochemical Detection Strategies. SENSORS (BASEL, SWITZERLAND) 2019; 20:E103. [PMID: 31878023 PMCID: PMC6982738 DOI: 10.3390/s20010103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome is a condition that results from dysfunction of different metabolic pathways leading to increased risk of disorders such as hyperglycemia, atherosclerosis, cardiovascular diseases, cancer, neurodegenerative disorders etc. As this condition cannot be diagnosed based on a single marker, multiple markers need to be detected and quantified to assess the risk facing an individual of metabolic syndrome. In this context, chemical- and bio-sensors capable of detecting multiple analytes may provide an appropriate diagnostic strategy. Research in this field has resulted in the evolution of sensors from the first generation to a fourth generation of 'smart' sensors. A shift in the sensing paradigm involving the sensing element and transduction strategy has also resulted in remarkable advancements in biomedical diagnostics particularly in terms of higher sensitivity and selectivity towards analyte molecule and rapid response time. This review encapsulates the significant advancements reported so far in the field of sensors developed for biomarkers of metabolic syndrome.
Collapse
Affiliation(s)
- Madhurantakam Sasya
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata-9518510, Japan;
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur 613401, India; (K.S.S.D.); (J.K.B.); (J.B.B.R.)
- School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur 613401, India
| | - K. S. Shalini Devi
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur 613401, India; (K.S.S.D.); (J.K.B.); (J.B.B.R.)
- School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur 613401, India
| | - Jayanth K. Babu
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur 613401, India; (K.S.S.D.); (J.K.B.); (J.B.B.R.)
- School of Electrical & Electronics Engineering, SASTRA Deemed-to-be University, Thanjavur 613401, India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur 613401, India; (K.S.S.D.); (J.K.B.); (J.B.B.R.)
- School of Electrical & Electronics Engineering, SASTRA Deemed-to-be University, Thanjavur 613401, India
| | - Uma Maheswari Krishnan
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata-9518510, Japan;
- School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur 613401, India
- School of Arts, Science & Humanities, SASTRA Deemed-to-be University, Thanjavur 613401, India
| |
Collapse
|
14
|
Ni-P nanostructures on flexible paper for morphology effect of nonenzymatic electrocatalysis for urea. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Ying X, Deng S, Zhu B, Zhang F, Mao X, Tu J, Ruan X, Yi X, Li J, Gao Y. Study of bamboo shoots quality by utilizing electronic nose sensor array and its optimization. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1657446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Xiaoguo Ying
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, P.R. China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, P.R. China
| | - Bowei Zhu
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Feixiang Zhang
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Xinyi Mao
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Jiayun Tu
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Xiaorong Ruan
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Xiaomei Yi
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Jian Li
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Yuanyuan Gao
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| |
Collapse
|
16
|
Zhou X, Qian X, Tan X, Ran X, Li Z, Huang Z, Yang L, Xie X. Water-soluble pillar[6]arene functionalized PdPt porous core-shell octahedral nanodendrites to construct highly sensitive and robust neuron-specific enolase immunosensor by host-guest chemistry assisted catalytic amplification. Anal Chim Acta 2019; 1068:18-27. [DOI: 10.1016/j.aca.2019.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
|
17
|
Hou X, Liu X, Li Z, Zhang J, Du G, Ran X, Yang L. Electrochemical determination of methyl parathion based on pillar[5]arene@AuNPs@reduced graphene oxide hybrid nanomaterials. NEW J CHEM 2019. [DOI: 10.1039/c9nj02901j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detection of pesticides has become a very important and critical research area because of the rapid development of agriculture and strict environmental protection regulations.
Collapse
Affiliation(s)
- Xiaoqian Hou
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming
- China
| | - Xuwen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming
- China
| | - Zhi Li
- School of Materials Science and Engineering
- School of Chemical Engineering
- Southwest Forestry University
- Kunming
- China
| | - Jun Zhang
- School of Materials Science and Engineering
- School of Chemical Engineering
- Southwest Forestry University
- Kunming
- China
| | - Guanben Du
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming
- China
| | - Xin Ran
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming
- China
| | - Long Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming
- China
| |
Collapse
|
18
|
Nikolaev KG, Ermolenko YE, Offenhäusser A, Ermakov SS, Mourzina YG. Multisensor Systems by Electrochemical Nanowire Assembly for the Analysis of Aqueous Solutions. Front Chem 2018; 6:256. [PMID: 30009159 PMCID: PMC6034576 DOI: 10.3389/fchem.2018.00256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/08/2018] [Indexed: 02/04/2023] Open
Abstract
The development of electrochemical multisensor systems is driven by the need for fast, miniature, inexpensive, analytical devices, and advanced interdisciplinary based on both chemometric and (nano)material approaches. A multicomponent analysis of complex mixtures in environmental and technological monitoring, biological samples, and cell culture requires chip-based multisensor systems with high-stability sensors. In this paper, we describe the development, characterization, and applications of chip-based nanoelectrochemical sensor arrays prepared by the directed electrochemical nanowire assembly (DENA) of noble metals and metal alloys to analyze aqueous solutions. A synergic action of the electrode transducer function and electrocatalytic activity of the nanostructured surface toward analytes is achieved in the assembled metal nanowire (NW) sensors. Various sensor nanomaterials (Pd, Ni, Au, and their multicomponent compositions) can be electrochemically assembled on a single chip without employing multiple cycles of photolithography process to realize multi-analyte sensing applications as well as spatial resolution of sensor analysis by this single-chip multisensor system. For multi-analyte electrochemical sensing, individual amperometric signals of two or more nanowires can be acquired, making use of the specific electrocatalytic surface properties of the individual nanowire sensors of the array toward analytes. To demonstrate the application of a new electrochemical multisensor platform, Pd-Au, Pd-Ni, Pd, and Au NW electrode arrays on a single chip were employed for the non-enzymatic analysis of hydrogen peroxide, glucose, and ethanol. The analytes are determined at low absolute values of the detection potentials with linear concentration ranges of 1.0 × 10−6 − 1.0 × 10−3 M (H2O2), 1.5 × 10−7 − 2.0 × 10−3 M (glucose), and 0.7 × 10−3 − 3.0 × 10−2 M (ethanol), detection limits of 2 × 10−7 M (H2O2), 4 × 10−8 M (glucose), and 5.2 × 10−4 M (ethanol), and sensitivities of 18 μA M−1 (H2O2), 178 μA M−1 (glucose), and 28 μA M−1 (ethanol), respectively. The sensors demonstrate a high level of stability due to the non-enzymatic detection mode. Based on the DENA-assembled nanowire electrodes of a compositional diversity, we propose a novel single-chip electrochemical multisensor platform, which is promising for acquiring complex analytical signals for advanced data processing with chemometric techniques aimed at the development of electronic tongue-type multisensor systems for flexible multi-analyte monitoring and healthcare applications.
Collapse
Affiliation(s)
- Konstantin G Nikolaev
- Institute of Complex Systems ICS-8, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-FIT, Jülich, Germany.,Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Yury E Ermolenko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Andreas Offenhäusser
- Institute of Complex Systems ICS-8, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-FIT, Jülich, Germany
| | - Sergey S Ermakov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Yulia G Mourzina
- Institute of Complex Systems ICS-8, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-FIT, Jülich, Germany
| |
Collapse
|
19
|
Ling P, Zhang Q, Cao T, Gao F. Versatile Three-Dimensional Porous Cu@Cu2
O Aerogel Networks as Electrocatalysts and Mimicking Peroxidases. Angew Chem Int Ed Engl 2018; 57:6819-6824. [DOI: 10.1002/anie.201801369] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids; Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing; Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB); College of Chemistry and Materials Science; Anhui Normal University; Wuhu 241002 P. R. China
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids; Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing; Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB); College of Chemistry and Materials Science; Anhui Normal University; Wuhu 241002 P. R. China
| | - Tingting Cao
- Laboratory of Functionalized Molecular Solids; Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing; Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB); College of Chemistry and Materials Science; Anhui Normal University; Wuhu 241002 P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids; Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing; Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB); College of Chemistry and Materials Science; Anhui Normal University; Wuhu 241002 P. R. China
| |
Collapse
|
20
|
Ling P, Zhang Q, Cao T, Gao F. Versatile Three-Dimensional Porous Cu@Cu2
O Aerogel Networks as Electrocatalysts and Mimicking Peroxidases. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801369] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids; Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing; Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB); College of Chemistry and Materials Science; Anhui Normal University; Wuhu 241002 P. R. China
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids; Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing; Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB); College of Chemistry and Materials Science; Anhui Normal University; Wuhu 241002 P. R. China
| | - Tingting Cao
- Laboratory of Functionalized Molecular Solids; Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing; Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB); College of Chemistry and Materials Science; Anhui Normal University; Wuhu 241002 P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids; Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing; Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB); College of Chemistry and Materials Science; Anhui Normal University; Wuhu 241002 P. R. China
| |
Collapse
|
21
|
Cardoso de Sá A, Cipri A, González-Calabuig A, Stradiotto NR, del Valle M. Multivariate Determination of Total Sugar Content and Ethanol in Bioethanol Production Using Carbon Electrodes Modified with MWCNT/MeOOH and Chemometric Data Treatment. ELECTROANAL 2018. [DOI: 10.1002/elan.201700725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Acelino Cardoso de Sá
- Department of Analytical Chemistry, Institute of Chemistry; Universidade Estadual Paulista (UNESP); 55 Rua Francisco Degni Araraquara 14800-060, SP Brazil
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| | - Andrea Cipri
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| | - Andreu González-Calabuig
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| | - Nelson Ramos Stradiotto
- Department of Analytical Chemistry, Institute of Chemistry; Universidade Estadual Paulista (UNESP); 55 Rua Francisco Degni Araraquara 14800-060, SP Brazil
| | - Manel del Valle
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| |
Collapse
|
22
|
Manoj D, Theyagarajan K, Saravanakumar D, Senthilkumar S, Thenmozhi K. Aldehyde functionalized ionic liquid on electrochemically reduced graphene oxide as a versatile platform for covalent immobilization of biomolecules and biosensing. Biosens Bioelectron 2018; 103:104-112. [DOI: 10.1016/j.bios.2017.12.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/03/2023]
|
23
|
Zhang Q, Luo Q, Qin Z, Liu L, Wu Z, Shen B, Hu W. Self-Assembly of Graphene-Encapsulated Cu Composites for Nonenzymatic Glucose Sensing. ACS OMEGA 2018; 3:3420-3428. [PMID: 30023869 PMCID: PMC6045414 DOI: 10.1021/acsomega.7b01197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/10/2017] [Indexed: 06/04/2023]
Abstract
Cu has recently received great interest as a potential candidate for glucose sensing to overcome the problems with noble metals. In this work, reduced graphene oxide-encapsulated Cu nanoparticles (Cu@RGO) have been prepared via an electrostatic self-assembly method. This core/shell composites were found to be more stable than conventional Cu-decorated graphene composites and bare copper nanoparticles in an air atmosphere because the graphene shell can effectively protect the Cu nanoparticles from oxidation. In addition, the obtained Cu@RGO composites also showed an outstanding electrocatalytic activity toward glucose oxidation with a wide linear detection range of 1 μM to 2 mM, low detection limit of 0.34 μM (S/N = 3), and a sensitivity of 150 μA mM-1 cm-2. Moreover, Cu@RGO composites exhibited a satisfactory reproducibility, selectivity, and long effective performance. These excellent properties indicated that Cu@RGO nanoparticles have great potential application in glucose detection.
Collapse
Affiliation(s)
- Qi Zhang
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative
Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
| | - Qin Luo
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative
Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
| | - Zhenbo Qin
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative
Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
| | - Lei Liu
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative
Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
| | - Zhong Wu
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bin Shen
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative
Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
| | - Wenbin Hu
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
24
|
Pokrzywnicka M, Koncki R. Disaccharides Determination: A Review of Analytical Methods. Crit Rev Anal Chem 2017; 48:186-213. [DOI: 10.1080/10408347.2017.1391683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Robert Koncki
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Pérez-Fernández B, Martín-Yerga D, Costa-García A. Galvanostatic electrodeposition of copper nanoparticles on screen-printed carbon electrodes and their application for reducing sugars determination. Talanta 2017; 175:108-113. [PMID: 28841966 DOI: 10.1016/j.talanta.2017.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022]
Abstract
In this work, a novel method for the galvanostatic electrodeposition of copper nanoparticles on screen-printed carbon electrodes was developed. Nanoparticles of spherical morphology with sizes between 60 and 280nm were obtained. The electrocatalytic effect of these copper nanospheres towards the oxidation of different sugars was studied. Excellent analytical performance was obtained with the nanostructured sensor: low detection limits and wide linear ranges (1-10,000µM) were achieving for the different reducing sugars evaluated (glucose, fructose, arabinose, galactose, mannose, xylose) with very similar calibration slopes, which demonstrates the possibility of total sugar detection. The reproducibility of these sensors was 4.4% (intra-electrode) and 7.2% (inter-electrode). The stability of the nanostructured electrodes was at least 30 days, even using the same device on different days. Several real samples (honey, orange juice and normal and sugar-free soft drinks) were evaluated to study the reliability of the nanostructured sensor.
Collapse
Affiliation(s)
- Beatriz Pérez-Fernández
- Nano-bioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Spain
| | - Daniel Martín-Yerga
- Nano-bioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Spain
| | - Agustín Costa-García
- Nano-bioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Spain.
| |
Collapse
|
26
|
Nickel and copper foam electrodes modified with graphene or carbon nanotubes for electrochemical identification of Chinese rice wines. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2350-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Three-Dimensional Copper Foam Supported CuO Nanowire Arrays: An Efficient Non-enzymatic Glucose Sensor. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.150] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Facile synthesis of layered CuS/RGO/CuS nanocomposite on Cu foam for ultrasensitive nonenzymatic detection of glucose. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Zhao G, Zhang L, Niu Y, Sun K. A molten Mg corrosion method for preparing porous Ti foam as self-supported Li–O2 battery cathodes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Zheng L, Gao Y, Zhang J, Li J, Yu Y, Hui G. Chinese Quince (Cydonia oblonga Miller) Freshness Rapid Determination Method Using Surface Acoustic Wave Resonator Combined with Electronic Nose. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1169285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Le Zheng
- College of Information Engineering, Key Lab of Forestry Intelligent Monitoring and Information of Zhejiang Province, Zhejiang A&F University, Linan, China
| | - Yuanyuan Gao
- College of Information Engineering, Key Lab of Forestry Intelligent Monitoring and Information of Zhejiang Province, Zhejiang A&F University, Linan, China
| | - Jianfeng Zhang
- College of Information Engineering, Key Lab of Forestry Intelligent Monitoring and Information of Zhejiang Province, Zhejiang A&F University, Linan, China
| | - Jian Li
- College of Information Engineering, Key Lab of Forestry Intelligent Monitoring and Information of Zhejiang Province, Zhejiang A&F University, Linan, China
| | - Yu Yu
- College of Information Engineering, Key Lab of Forestry Intelligent Monitoring and Information of Zhejiang Province, Zhejiang A&F University, Linan, China
| | - Guohua Hui
- College of Information Engineering, Key Lab of Forestry Intelligent Monitoring and Information of Zhejiang Province, Zhejiang A&F University, Linan, China
| |
Collapse
|
31
|
Study of a Sucrose Sensor by Functional Cu Foam Material and Its Applications in Commercial Beverages. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0580-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Zhang W, Li R, Xing L, Wang X, Gou X. Carnation-like CuO Hierarchical Nanostructures Assembled by Porous Nanosheets for Nonenzymatic Glucose Sensing. ELECTROANAL 2016. [DOI: 10.1002/elan.201600132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenli Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 People's Republic of China
| | - Rong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 People's Republic of China
| | - Lu Xing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 People's Republic of China
| | - Xing Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 People's Republic of China
| | - Xinglong Gou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 People's Republic of China
| |
Collapse
|
33
|
Hui G, Zhang J, Li J, Zheng L. Sucrose quantitative and qualitative analysis from tastant mixtures based on Cu foam electrode and stochastic resonance. Food Chem 2016; 197 Pt B:1168-76. [DOI: 10.1016/j.foodchem.2015.11.091] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/16/2015] [Indexed: 01/22/2023]
|
34
|
Lu W, Sun Y, Dai H, Ni P, Jiang S, Wang Y, Li Z, Li Z. Fabrication of cuprous sulfide nanorods supported on copper foam for nonenzymatic amperometric determination of glucose and hydrogen peroxide. RSC Adv 2016. [DOI: 10.1039/c6ra18641f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cuprous sulfide nanothorns were fabricated on copper foam for nonenzymatic amperometric determination of glucose and hydrogen peroxide.
Collapse
Affiliation(s)
- Wangdong Lu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Yujing Sun
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
| | - Haichao Dai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Pengjuan Ni
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Shu Jiang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Yilin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Zhen Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
| |
Collapse
|
35
|
Dong C, Zhong H, Kou T, Frenzel J, Eggeler G, Zhang Z. Three-Dimensional Cu Foam-Supported Single Crystalline Mesoporous Cu2O Nanothorn Arrays for Ultra-Highly Sensitive and Efficient Nonenzymatic Detection of Glucose. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20215-23. [PMID: 26305112 DOI: 10.1021/acsami.5b05738] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Highly sensitive and efficient biosensors play a crucial role in clinical, environmental, industrial, and agricultural applications, and tremendous efforts have been dedicated to advanced electrode materials with superior electrochemical activities and low cost. Here, we report a three-dimensional binder-free Cu foam-supported Cu2O nanothorn array electrode developed via facile electrochemistry. The nanothorns growing in situ along the specific direction of <011> have single crystalline features and a mesoporous surface. When being used as a potential biosensor for nonenzyme glucose detection, the hybrid electrode exhibits multistage linear detection ranges with ultrahigh sensitivities (maximum of 97.9 mA mM(-1) cm(-2)) and an ultralow detection limit of 5 nM. Furthermore, the electrode presents outstanding selectivity and stability toward glucose detection. The distinguished performances endow this novel electrode with powerful reliability for analyzing human serum samples. These unprecedented sensing characteristics could be ascribed to the synergistic action of superior electrochemical catalytic activity of nanothorn arrays with dramatically enhanced surface area and intimate contact between the active material (Cu2O) and current collector (Cu foam), concurrently supplying good conductivity for electron/ion transport during glucose biosensing. Significantly, our findings could guide the fabrication of new metal oxide nanostructures with well-organized morphologies and unique properties as well as low materials cost.
Collapse
Affiliation(s)
- Chaoqun Dong
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University , Jingshi Road 17923, Jinan 250061, P. R. China
| | - Hua Zhong
- Dermatological Department, Qilu Hospital of Shandong University , Jinan Culture Road 107, Jinan 250012, P. R. China
| | - Tianyi Kou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University , Jingshi Road 17923, Jinan 250061, P. R. China
| | - Jan Frenzel
- Institut für Werkstoffe, Ruhr Universität Bochum , Bochum 44780, Germany
| | - Gunther Eggeler
- Institut für Werkstoffe, Ruhr Universität Bochum , Bochum 44780, Germany
| | - Zhonghua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University , Jingshi Road 17923, Jinan 250061, P. R. China
| |
Collapse
|
36
|
Jingyi Z. Study of detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance model. Bioengineered 2015. [PMID: 26198910 DOI: 10.1080/21655979.2015.1058453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance (MSR) model was studied in this paper. A numerically stimulating model based on MSR was established. And gas-ionizing experiment by adding electronic white noise to induce 1.65 MHz periodic component in the carbon nanotubes gas sensor was performed. It was found that the signal-to-noise ratio (SNR) spectrum displayed 2 maximal values, which accorded to the change of the broken-line potential function. The experimental results of gas-ionizing experiment demonstrated that periodic component of 1.65 MHz had multiple MSR phenomena, which was in accordance with the numerical stimulation results. In this way, the numerical stimulation method provides an innovative method for the detecting mechanism research of carbon nanotubes gas sensor.
Collapse
Affiliation(s)
- Zhu Jingyi
- a Department of Computer and Information Technology ; Zhejiang Changzheng Vocational & Technical College ; Hangzhou , China
| |
Collapse
|