1
|
Jacques A, Saad A, Chehimi MM, Poleunis C, Delcorte A, Delhalle J, Mekhalif Z. Nitinol Modified by In Situ Generated Diazonium Salts as Adhesion Promoters for Photopolymerized Pyrrole. ChemistrySelect 2018. [DOI: 10.1002/slct.201802209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Amory Jacques
- Laboratory of Chemistry and Electrochemistry of Surfaces (CES)University of Namur rue de Bruxelles, 61 B-5000 Namur Belgium
| | - Ali Saad
- Laboratory of MaterialsMolecules and Applications, IPESTUniversity of Carthage Sidi Bou Said road, B.P. 51 2070 La Marsa Tunisia
| | | | - Claude Poleunis
- Université Catholique de LouvainInstitute of Condensed Matter and Nanosciences (IMCN) Croix du Sud 1 Louvain-la-Neuve Belgium
| | - Arnaud Delcorte
- Université Catholique de LouvainInstitute of Condensed Matter and Nanosciences (IMCN) Croix du Sud 1 Louvain-la-Neuve Belgium
| | - Joseph Delhalle
- Laboratory of Chemistry and Electrochemistry of Surfaces (CES)University of Namur rue de Bruxelles, 61 B-5000 Namur Belgium
| | - Zineb Mekhalif
- Laboratory of Chemistry and Electrochemistry of Surfaces (CES)University of Namur rue de Bruxelles, 61 B-5000 Namur Belgium
| |
Collapse
|
2
|
Pandey RK, Kawabata Y, Teraji S, Norisuye T, Tran-Cong-Miyata Q, Soh S, Nakanishi H. Metal Nanowire-Based Hybrid Electrodes Exhibiting High Charge/Discharge Rates and Long-Lived Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36350-36357. [PMID: 28944655 DOI: 10.1021/acsami.7b07794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanostructured electrodes are at the forefront of advanced materials research, and have been studied extensively in the context of their potential applications in energy storage and conversion. Here, we report on the properties of core-shell (gold-polypyrrole) hybrid nanowires and their suitability as electrodes in electrochemical capacitors and as electrocatalysts. In general, the specific capacitance of electrochemical capacitors can be increased by faradaic reactions, but their charge transfer resistance impedes charge transport, decreasing the capacitance with increasing charge/discharge rate. The specific capacitance of the hybrid electrodes is enhanced due to the pseudocapacitance of the polypyrrole shells; moreover, the electrodes operate as an ideal capacitive element and maintain their specific capacitance even at fast charge/discharge rates of 4690 mA/cm3 and 10 V/s. These rates far exceed those of other types of pseudocapacitors, and are even superior to electric double layer-based supercapacitors. The mechanisms behind these fast charge/discharge rates are elucidated by electrochemical impedance spectroscopy, and are ascribed to the reduced internal resistance associated with the fast charge transport ability of the gold nanowire cores, low ionic resistance of the polypyrrole shells, and enhanced electron transport across the nanowire's junctions. Furthermore, the hybrid electrodes show great catalytic activity for ethanol electro-oxidation, comparable to bare gold nanowires, and the surface activity of gold cores is not affected by the polypyrrole coating. The electrodes exhibit improved stability for electrocatalysis during potential cycling. This study demonstrates that the gold-polypyrrole hybrid electrodes can store and deliver charge at fast rates, and that the polypyrrole shells of the nanowires extend the catalytic lifetime of the gold cores.
Collapse
Affiliation(s)
- Rakesh K Pandey
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology , Matsugasaki, Kyoto 606-8585, Japan
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yuto Kawabata
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology , Matsugasaki, Kyoto 606-8585, Japan
| | - Satoshi Teraji
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology , Matsugasaki, Kyoto 606-8585, Japan
| | - Tomohisa Norisuye
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology , Matsugasaki, Kyoto 606-8585, Japan
| | - Qui Tran-Cong-Miyata
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology , Matsugasaki, Kyoto 606-8585, Japan
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Hideyuki Nakanishi
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology , Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
3
|
Arrotin B, Delhalle J, Dubois P, Mespouille L, Mekhalif Z. Electroassisted Functionalization of Nitinol Surface, a Powerful Strategy for Polymer Coating through Controlled Radical Surface Initiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2977-2985. [PMID: 28252303 DOI: 10.1021/acs.langmuir.6b04536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coating Nitinol (NiTi) surfaces with a polymer layer has become very appealing in the past few years owing to its increased attraction in the biomedical field. Although its intrinsic properties helped ensure its popularity, its extensive implementation is still hampered by its nickel inclusion, making it sensitive to pitting corrosion and therefore leading to the release of carcinogenic Ni2+ ions. Among all recent ways to modify NiTi surfaces, elaboration of self-assembled monolayers is of great interest as their high order confers a reinforcement of the metal surface corrosion resistance and brings new functionalities to the metal for postmodification processes. In this work, we compare the electroassisted and thermally assisted self-assembling of 11-(2-bromoisobutyrate)-undecyl-1-phosphonic acid (BUPA) to the classical immersion process on NiTi surfaces initially submitted to a hydrothermal treatment. Among all tested conditions, the electroassisted grafting of BUPA at room temperature appears to be the most promising alternative, as it allows grafting in very short times (5-10 min), thus preventing its degradation. The thus-formed layer has been proven to be sufficient to enable the surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-(dimethylamino)ethyl methacrylate.
Collapse
Affiliation(s)
- Bastien Arrotin
- Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur , rue de Bruxelles, 61, B-5000 Namur, Belgium
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials & Polymers (CIRMAP), Health and Materials Research Institutes, University of Mons , Place du Parc, 23, B-7000 Mons, Belgium
| | - Joseph Delhalle
- Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur , rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials & Polymers (CIRMAP), Health and Materials Research Institutes, University of Mons , Place du Parc, 23, B-7000 Mons, Belgium
- Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST) , Rue du Brill, 41, 4422 Belvaux, Luxembourg
| | - Laetitia Mespouille
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials & Polymers (CIRMAP), Health and Materials Research Institutes, University of Mons , Place du Parc, 23, B-7000 Mons, Belgium
| | - Zineb Mekhalif
- Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur , rue de Bruxelles, 61, B-5000 Namur, Belgium
| |
Collapse
|
4
|
Stockhausen V, Nguyen VQ, Martin P, Lacroix JC. Bottom-Up Electrochemical Fabrication of Conjugated Ultrathin Layers with Tailored Switchable Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:610-617. [PMID: 27992174 DOI: 10.1021/acsami.6b08754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A bottom-up electrochemical process for fabricating conjugated ultrathin layers with tailored switchable properties is developed. Ultrathin layers of covalently grafted oligo(bisthienylbenzene) (oligo(BTB)) are used as switchable organic electrodes, and 3,4-ethylenedioxythiophene (EDOT) is oxidized on this layer. Adding only a few (less than 3) nanometers of EDOT moieties (5 to 6 units ) completely changes the switching properties of the layer without changing the surface concentration of the electroactive species. A range of new materials with tunable interfacial properties is created. They consist of oligo(BTB)-oligo(EDOT) diblock oligomers of various relative lengths covalently grafted onto the underlying electrode. These films retain reversible redox on/off switching and their switching potential can be finely tuned between +0.6 and -0.3 V/SCE while the overall thickness remains below 11 nm.
Collapse
Affiliation(s)
- Verena Stockhausen
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Van Quyen Nguyen
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pascal Martin
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Jean Christophe Lacroix
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
5
|
Jacques A, Chehimi M, Poleunis C, Delcorte A, Delhalle J, Mekhalif Z. Grafting of 4-pyrrolyphenyldiazonium in situ generated on NiTi, an adhesion promoter for pyrrole electropolymerisation? Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|