1
|
Joshi R, Ravindran K V, Lahiri I. Graphene-based materials and electrochemical biosensors: an overview. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:143001. [PMID: 39908672 DOI: 10.1088/1361-648x/adb2d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Graphene, an exceptional two-dimensional material, has attracted significant attention from the scientific community. Its unique physiochemical properties make it a suitable candidate for many applications in the field of biotechnology and medical sciences. High specific surface area, exceptionally high electrical conductivity, and good biocompatibility of graphene give it a large scope in disease diagnosis and biosensing applications. This review aims at presenting the advances in the journey of graphene-based materials and their successful implication as electrochemical nanobiosensors. The first part of the review summarizes the history, structure, and recent developments in the large-scale production of graphene. It further includes the sensing mechanism, the recent trends in biosensing, and improvements in graphene-based biosensors. The comparative analysis shows graphene-based electrochemical biosensors to have high sensitivity, long-term stability, and low detection limits compared to the various other biosensors.
Collapse
Affiliation(s)
- Rita Joshi
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Veena Ravindran K
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Indranil Lahiri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
2
|
Guliya H, Yadav M, Nohwal B, Lata S, Chaudhary R. Emphasizing laccase based amperometric biosensing as an eventual panpharmacon for rapid and effective detection of phenolic compounds. Biochim Biophys Acta Gen Subj 2024; 1868:130691. [PMID: 39117046 DOI: 10.1016/j.bbagen.2024.130691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Phenols and phenolic compounds are major plant metabolites used in industries to produce pesticides, dyes, medicines, and plastics. These compounds enter water bodies, soil, and living organisms via such industrial routes. Some polyphenolic compounds like phenolic acids, flavonoids have antioxidant and organoleptic qualities, as well as preventive effects against neurodegenerative illnesses, cardiovascular disease, diabetes, and cancer. However, many of the polyphenolic compounds, such as Bisphenol A, phthalates, and dioxins also cause major environmental pollution and endocrine disruption, once the dose level becomes objectionable. The development of reliable and rapid methods for studying their dose dependency, high-impact detrimental effects, and continuous monitoring of phenol levels in humans and environmental samples is a crucial necessity of the day. Enzymatic biosensors employing phenol oxidases like tyrosinase, peroxidase and laccase, utilizing electrochemical amperometric methods are innovative methods for phenol quantification. Enzymatic biosensing, being highly sensitive and efficacious technique, is illuminated in this review article as a progressive approach for phenol quantification with special emphasis on laccase amperometric biosensors. Even more, the review article discussion is extended up to nanozymes, composites of metal organic frameworks (MOFs), and molecularly imprinted polymers (MIPs) as some emerging species for electro-chemical sensing of phenols. Applications of phenol quantification and green biosensing are also specified. A concrete summary of the innovative polyphenol detection approaches with futuristic scope indicates a triumph over some existing constraints of the phenomenological approaches providing an informative aisle to the modern researchers towards the bulk readability.
Collapse
Affiliation(s)
- Himani Guliya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India
| | - Meena Yadav
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India
| | - Bhawna Nohwal
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India
| | - Suman Lata
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India.
| | - Reeti Chaudhary
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India.
| |
Collapse
|
3
|
Meng X, O'Hare D, Ladame S. Surface immobilization strategies for the development of electrochemical nucleic acid sensors. Biosens Bioelectron 2023; 237:115440. [PMID: 37406480 DOI: 10.1016/j.bios.2023.115440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Following the recent pandemic and with the emergence of cell-free nucleic acids in liquid biopsies as promising biomarkers for a broad range of pathologies, there is an increasing demand for a new generation of nucleic acid tests, with a particular focus on cost-effective, highly sensitive and specific biosensors. Easily miniaturized electrochemical sensors show the greatest promise and most typically rely on the chemical functionalization of conductive materials or electrodes with sequence-specific hybridization probes made of standard oligonucleotides (DNA or RNA) or synthetic analogues (e.g. Peptide Nucleic Acids or PNAs). The robustness of such sensors is mostly influenced by the ability to control the density and orientation of the probe at the surface of the electrode, making the chemistry used for this immobilization a key parameter. This exhaustive review will cover the various strategies to immobilize nucleic acid probes onto different solid electrode materials. Both physical and chemical immobilization techniques will be presented. Their applicability to specific electrode materials and surfaces will also be discussed as well as strategies for passivation of the electrode surface as a way of preventing electrode fouling and reducing nonspecific binding.
Collapse
Affiliation(s)
- Xiaotong Meng
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK. https://in.linkedin.com/https://www.linkedin.com/profile/view?id=xiaotong-meng-888IC
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Verma S, Thakur D, Pandey CM, Kumar D. Recent Prospects of Carbonaceous Nanomaterials-Based Laccase Biosensor for Electrochemical Detection of Phenolic Compounds. BIOSENSORS 2023; 13:305. [PMID: 36979517 PMCID: PMC10046707 DOI: 10.3390/bios13030305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Phenolic compounds (PhCs) are ubiquitously distributed phytochemicals found in many plants, body fluids, food items, medicines, pesticides, dyes, etc. Many PhCs are priority pollutants that are highly toxic, teratogenic, and carcinogenic. Some of these are present in body fluids and affect metabolism, while others possess numerous bioactive properties such as retaining antioxidant and antimicrobial activity in plants and food products. Therefore, there is an urgency for developing an effective, rapid, sensitive, and reliable tool for the analysis of these PhCs to address their environmental and health concern. In this context, carbonaceous nanomaterials have emerged as a promising material for the fabrication of electrochemical biosensors as they provide remarkable characteristics such as lightweight, high surface: volume, excellent conductivity, extraordinary tensile strength, and biocompatibility. This review outlines the current status of the applications of carbonaceous nanomaterials (CNTs, graphene, etc.) based enzymatic electrochemical biosensors for the detection of PhCs. Efforts have also been made to discuss the mechanism of action of the laccase enzyme for the detection of PhCs. The limitations, advanced emerging carbon-based material, current state of artificial intelligence in PhCs detection, and future scopes have also been summarized.
Collapse
Affiliation(s)
- Sakshi Verma
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Deeksha Thakur
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Chandra Mouli Pandey
- Department of Chemistry, Faculty of Science, SGT University, Gurugram 122505, India
| | - Devendra Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| |
Collapse
|
5
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
6
|
Smajdor J, Paczosa-Bator B, Piech R. Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000. MEMBRANES 2022; 12:1225. [PMID: 36557132 PMCID: PMC9782681 DOI: 10.3390/membranes12121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This article presents advances in the electrochemical determination of hormones and steroids since 2000. A wide spectrum of techniques and working electrodes have been involved in the reported measurements in order to obtain the lowest possible limits of detection. The voltammetric and polarographic techniques, due to their sensitivity and easiness, could be used as alternatives to other, more complicated, analytical assays. Still, growing interest in designing a new construction of the working electrodes enables us to prepare new measurement procedures and obtain lower limits of detection. A brief description of the measured compounds has been presented, along with a comparison of the obtained results.
Collapse
|
7
|
Fahmy HM, Abu Serea ES, Salah-Eldin RE, Al-Hafiry SA, Ali MK, Shalan AE, Lanceros-Méndez S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomater Sci Eng 2022; 8:964-1000. [PMID: 35229605 DOI: 10.1021/acsbiomaterials.1c00710] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphene- and carbon-based nanomaterials are key materials to develop advanced biosensors for the sensitive detection of many biomarkers owing to their unique properties. Biosensors have attracted increasing interest because they allow efficacious, sensitive, selective, rapid, and low-cost diagnosis. Biosensors are analytical devices based on receptors for the process of detection and transducers for response measuring. Biosensors can be based on electrochemical, piezoelectric, thermal, and optical transduction mechanisms. Early virus identification provides critical information about potentially effective and selective therapies, extends the therapeutic window, and thereby reduces morbidity. The sensitivity and selectivity of graphene can be amended via functionalizing it or conjoining it with further materials. Amendment of the optical and electrical features of the hybrid structure by introducing appropriate functional groups or counterparts is especially appealing for quick and easy-to-use virus detection. Various techniques for the electrochemical detection of viruses depending on antigen-antibody interactions or DNA hybridization are discussed in this work, and the reasons behind using graphene and related carbon nanomaterials for the fabrication are presented and discussed. We review the existing state-of-the-art directions of graphene-based classifications for detecting DNA, protein, and hormone biomarkers and summarize the use of the different biosensors to detect several diseases, like cancer, Alzheimer's disease, and diabetes, to sense numerous viruses, including SARS-CoV-2, human immunodeficiency virus, rotavirus, Zika virus, and hepatitis B virus, and to detect the recent pandemic virus COVID-19. The general concepts, mechanisms of action, benefits, and disadvantages of advanced virus biosensors are discussed to afford beneficial evidence of the creation and manufacture of innovative virus biosensors. We emphasize that graphene-based nanomaterials are ideal candidates for electrochemical biosensor engineering due to their special and tunable physicochemical properties.
Collapse
Affiliation(s)
- Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Esraa Samy Abu Serea
- Chemistry and Biochemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.,BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Reem Essam Salah-Eldin
- Chemistry and Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Miar Khaled Ali
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan, 11422 Cairo, Egypt
| | - Senentxu Lanceros-Méndez
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Monteiro M, Sant'Anna M, dos Santos Júnior JC, Alves A, Macedo JF, Silva J, Gimenez IDF, Sussuchi EM. Reduced graphene oxide‐based sensor for 17α–ethinylestradiol voltammetric determination in wastewater, tablets and synthetic urine samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
In-situ redox-active hybrid graphene platform for label-free electrochemical biosensor: Insights from electrodeposition and electroless deposition. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Simultaneous determination of dopamine, uric acid and estriol in maternal urine samples based on the synergetic effect of reduced graphene oxide, silver nanowires and silver nanoparticles in their ternary 3D nanocomposite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Simion A, Candu N, Cojocaru B, Coman S, Bucur C, Forneli A, Primo A, Man IC, Parvulescu VI, Garcia H. Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Charithra MM, Manjunatha JGG, Raril C. Surfactant Modified Graphite Paste Electrode as an Electrochemical Sensor for the Enhanced Voltammetric Detection of Estriol with Dopamine and Uric acid. Adv Pharm Bull 2020; 10:247-253. [PMID: 32373493 PMCID: PMC7191228 DOI: 10.34172/apb.2020.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 12/02/2022] Open
Abstract
Purpose: Estriol (ERL) is a type of hormone among the groups of estrogen hormone that was detected through the voltammetric technique by constructing an electrochemical sensor based on the octoxynol-9 modified graphite paste electrode (OXL-9MGPE). Methods: Using the strategy of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) with a bare graphite paste electrode (BGPE) immobilized with OXL-9, ERL electro-oxidation has been assessed in 0.2 M phosphate buffer solution (PBS) of pH 6.0. The fabricated electrode has substantial electrochemical sensing efficiency, and the ERL oxidation at the OXL-9MGPE was the irreversible process. The surface morphological characteristics of BGPE and OXL-9MGPE were differentiated with the help of field emission scanning electron microscopy (FE-SEM). Results: The impact of various factors such as scan rate, pH, reproducibility, repeatability, and stability on the electro-oxidation of ERL was evaluated. Techniques of CV and DPV were utilized to determine ERL, dopamine (DAN), and uric acid (URA) simultaneously with the projected sensor. The peak current was varied with ERL concentration in the range from 4×10-5 to 1.2×10-4 M at OXL-9MGPE. From this, the detection limit 1.4×10 -6 M and limit of quantification (LOQ) 4.7×10-6 M have been attained. Conclusion: As a result, OXL-9MGPE was successfully achieved as an electrochemical detector for the electro analysis of ERL via the CV technique.
Collapse
|
13
|
Castrovilli MC, Bolognesi P, Chiarinelli J, Avaldi L, Cartoni A, Calandra P, Tempesta E, Giardi MT, Antonacci A, Arduini F, Scognamiglio V. Electrospray deposition as a smart technique for laccase immobilisation on carbon black-nanomodified screen-printed electrodes. Biosens Bioelectron 2020; 163:112299. [PMID: 32568697 DOI: 10.1016/j.bios.2020.112299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023]
Abstract
Enzymes immobilisation represents a critical issue in the design of biosensors to achieve standardization as well as suitable analytical performances in terms of sensitivity, selectivity, and stability. In this work electrospray deposition (ESD) has been exploited as a novel technique for the immobilisation of laccase enzyme on carbon black modified screen-printed electrodes. The aim is to fabricate an amperometric biosensor for phenolic compound detection. The electrodes produced by ESD have been analysed by scanning electron microscopy and characterised electrochemically to prove that this immobilisation technique is suited to manufacture high performance biosensors. The results show that the laccase enzyme maintains its activity after undergoing the electrospray ionisation process and deposition and the fabricated biosensor has improved performances in terms of storage (up to 3 months at room temperature) and working (up to 25 measurements on the same electrode) stability. The laccase-based biosensor has been tested for phenolic compound detection, with catechol as target analyte, in the linear range 2.5-50 μM, with 2.0 μM limit of detection, without interference from lead, cadmium, atrazine, and paraoxon, and without matrix effect in drinking, surface, and wastewater.
Collapse
Affiliation(s)
- Mattea Carmen Castrovilli
- Institute of Structure of Matter, National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29.300, 00015, Monterotondo, Italy
| | - Paola Bolognesi
- Institute of Structure of Matter, National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29.300, 00015, Monterotondo, Italy
| | - Jacopo Chiarinelli
- Institute of Structure of Matter, National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29.300, 00015, Monterotondo, Italy
| | - Lorenzo Avaldi
- Institute of Structure of Matter, National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29.300, 00015, Monterotondo, Italy
| | | | - Pietro Calandra
- Institute of Nanostructured Materials, National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29.300, 00015, Monterotondo, Italy
| | - Emanuela Tempesta
- Institute of Environmental Geology and Geoengineering, National Research Council, Via Salaria Km 29.300, 00015, Monterotondo, Italy
| | - Maria Teresa Giardi
- Institute of Crystallography, National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29.300, 00015, Monterotondo, Italy; Biosensor Srl, Via Degli Olmetti 4, 00060, Formello, Rome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29.300, 00015, Monterotondo, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, Via Renato Rascel 30, 00128, Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29.300, 00015, Monterotondo, Italy.
| |
Collapse
|
14
|
Gomes ES, Leite FR, Ferraz BR, Mourão HA, Malagutti AR. Voltammetric sensor based on cobalt-poly(methionine)-modified glassy carbon electrode for determination of estriol hormone in pharmaceuticals and urine. J Pharm Anal 2020; 9:347-357. [PMID: 31929944 PMCID: PMC6951483 DOI: 10.1016/j.jpha.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022] Open
Abstract
A voltammetric sensor based on the electropolymerization of cobalt-poly(methionine) (Co-poly(Met)) on a glassy carbon electrode (GCE) was developed and applied for the determination of estriol by differential pulse voltammetry (DPV) for the first time. The electrochemical properties of the Co-poly(Met)/GCE were analysed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the polymers on the GCE surface. The deposition of the Co-poly(Met) film on the GCE surface enhanced the sensor electronic transfer. CV studies revealed that estriol exhibits an irreversible oxidation peak at +0.58 V for the Co-poly(Met)/GCE (vs. Ag/AgCl reference electrode) in 0.10 mol/L Britton-Robinson buffer solution (pH = 7.0). Different voltammetric scan rates (10–200 mV/s) suggested that the estriol oxidation on the Co-poly(Met)/GCE surface is controlled by adsorption and diffusion processes. Based on the optimized DPV conditions, the linear responses for estriol quantification were from 0.596 μmol/L to 4.76 μmol/L (R2 = 0.996) and from 5.66 μmol/L to 9.90 μmol/L (R2 = 0.994) with a limit of detection (LOD) of 0.0340 μmol/L and a limit of quantification (LOQ) of 0.113 μmol/L. The DPV-Co-poly(Met)/GCE method provided good intra-day and inter-day repeatability with RSD values lower than 5%. Also, no interference of real sample matrices was observed on the estriol voltammetric response, making the DPV-Co-poly(Met)/GCE highly selective for estriol. The accuracy test showed that the estriol recovery was in the ranges 96.7%–103% and 98.7%–102% for pharmaceutical tablets and human urine, respectively. The estriol quantification in pharmaceutical tablets performed by the Co-poly(Met)/GCE-assisted DPV method was comparable to the official analytical protocols.
Collapse
Affiliation(s)
- Eliziana S. Gomes
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, MGT 367 Highway – Km 583, CEP 39100-000, Diamantina, MG, Brazil
| | - Fernando R.F. Leite
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, MGT 367 Highway – Km 583, CEP 39100-000, Diamantina, MG, Brazil
| | - Bruno R.L. Ferraz
- Department of Biology, Federal University of Espírito Santo, CEP 29500-000, Alegre, ES, Brazil
| | - Henrique A.J.L. Mourão
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT 367 Highway – Km 583, CEP 39100-000, Diamantina, MG, Brazil
| | - Andréa R. Malagutti
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, MGT 367 Highway – Km 583, CEP 39100-000, Diamantina, MG, Brazil
- Corresponding author.
| |
Collapse
|
15
|
Wang CF, Sun XY, Su M, Wang YP, Lv YK. Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules. Analyst 2020; 145:1550-1562. [DOI: 10.1039/c9an02047k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of biomacromolecule functionalized graphene electrochemical biosensors in the detection of pathogens and disease markers was reviewed.
Collapse
Affiliation(s)
- Chen-Feng Wang
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Xin-Yue Sun
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Ming Su
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Yi-Peng Wang
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Yun-Kai Lv
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| |
Collapse
|
16
|
Hareesha N, Manjunatha JG. Surfactant and polymer layered carbon composite electrochemical sensor for the analysis of estriol with ciprofloxacin. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/14328917.2019.1684657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nagarajappa Hareesha
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, India
| | - Jamballi G Manjunatha
- Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, India
| |
Collapse
|
17
|
Castrovilli MC, Bolognesi P, Chiarinelli J, Avaldi L, Calandra P, Antonacci A, Scognamiglio V. The convergence of forefront technologies in the design of laccase-based biosensors – An update. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Yuan L, Liu B, Yin K, Xu ZL. Development of an enzyme-linked immunosorbent assay for quantification of estriol in milk. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1637824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Lipeng Yuan
- Institute of Tropical Agriculture and Forestry, Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, People’s Republic of China
| | - Bo Liu
- Institute of Tropical Agriculture and Forestry, Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, People’s Republic of China
| | - Kaidan Yin
- Institute of Tropical Agriculture and Forestry, Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, People’s Republic of China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
19
|
A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecylphosphate film as electrochemical sensor. Talanta 2018; 179:115-123. [DOI: 10.1016/j.talanta.2017.10.048] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/21/2022]
|
20
|
Enzyme–Graphene Platforms for Electrochemical Biosensor Design With Biomedical Applications. Methods Enzymol 2018; 609:293-333. [DOI: 10.1016/bs.mie.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Donini CA, da Silva MKL, Simões RP, Cesarino I. Reduced graphene oxide modified with silver nanoparticles for the electrochemical detection of estriol. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Raymundo-Pereira PA, Campos AM, Vicentini FC, Janegitz BC, Mendonça CD, Furini LN, Boas NV, Calegaro ML, Constantino CJ, Machado SA, Oliveira ON. Sensitive detection of estriol hormone in creek water using a sensor platform based on carbon black and silver nanoparticles. Talanta 2017; 174:652-659. [DOI: 10.1016/j.talanta.2017.06.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
|
23
|
Evaluation of graphene oxide and reduced graphene oxide in the immobilization of laccase enzyme and its application in the determination of dopamine. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3738-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Jodar LV, Santos FA, Zucolotto V, Janegitz BC. Electrochemical sensor for estriol hormone detection in biological and environmental samples. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3726-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens Bioelectron 2017; 89:224-233. [DOI: 10.1016/j.bios.2016.03.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/22/2016] [Accepted: 03/13/2016] [Indexed: 01/22/2023]
|
26
|
Prado TM, Cincotto FH, Moraes FC, Machado SA. Electrochemical Sensor-Based Ruthenium Nanoparticles on Reduced Graphene Oxide for the Simultaneous Determination of Ethinylestradiol and Amoxicillin. ELECTROANAL 2017. [DOI: 10.1002/elan.201700014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Thiago M. Prado
- Institute of Chemistry of São Carlos; University of São Paulo; São Carlos, SP Brazil
| | | | - Fernando C. Moraes
- Chemistry Department; Federal University of São Carlos; São Carlos, SP Brazil
| | - Sergio A.S. Machado
- Institute of Chemistry of São Carlos; University of São Paulo; São Carlos, SP Brazil
| |
Collapse
|
27
|
Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2036-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Veerapandian M, Hunter R, Neethirajan S. Lipoxygenase-modified Ru-bpy/graphene oxide: Electrochemical biosensor for on-farm monitoring of non-esterified fatty acid. Biosens Bioelectron 2016; 78:253-258. [DOI: 10.1016/j.bios.2015.11.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/13/2015] [Accepted: 11/20/2015] [Indexed: 11/29/2022]
|
29
|
Fu HJ, Wang Y, Dong XX, Liu YX, Chen ZJ, Shen YD, Yang C, Dong JX, Xu ZL. Application of nickel cobalt oxide nanoflakes for electrochemical sensing of estriol in milk. RSC Adv 2016. [DOI: 10.1039/c6ra09186e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, a nickel cobalt oxide (Ni/Co oxide) nanoflake based electrochemical sensor for the fast determination of estriol in milk is presented for the first time.
Collapse
Affiliation(s)
- Hui-Jun Fu
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yu Wang
- Guangzhou Institute for Food Control
- Guangzhou 510410
- China
| | - Xiu-Xiu Dong
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yi-Xin Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Chi Yang
- Department of Pharmacy
- Nantong University
- Nantong 226001
- China
| | - Jie-Xian Dong
- Department of Entomology and UCD Comprehensive Cancer Center
- University of California
- Davis
- USA
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
30
|
Boujakhrout A, Jimenez-Falcao S, Martínez-Ruiz P, Sánchez A, Díez P, Pingarrón JM, Villalonga R. Novel reduced graphene oxide–glycol chitosan nanohybrid for the assembly of an amperometric enzyme biosensor for phenols. Analyst 2016; 141:4162-9. [DOI: 10.1039/c5an02640g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A sensitive laccase biosensor for phenols based on a novel graphene oxide–glycol chitosan nanohybrid.
Collapse
Affiliation(s)
| | | | - Paloma Martínez-Ruiz
- Department of Organic Chemistry I
- Faculty of Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - Alfredo Sánchez
- Department of Analytical Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - Paula Díez
- Department of Analytical Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - José M. Pingarrón
- Department of Analytical Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
- IMDEA Nanoscience
| | - Reynaldo Villalonga
- Department of Analytical Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
- IMDEA Nanoscience
| |
Collapse
|