1
|
Cheng Y, Meng P, Li L, Zhong L, Yuan C, Chen J, Liang Q. Boosting selective chlorine evolution reaction: Impact of Ag doping in RuO 2 electrocatalysts. J Colloid Interface Sci 2025; 685:97-106. [PMID: 39837251 DOI: 10.1016/j.jcis.2025.01.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/23/2025]
Abstract
The chlor-alkali process is critical to the modern chemical industry because of the wide utilization of chlorine gas (Cl2). More than 95 % of global Cl2 production relies on electrocatalytic chlorine evolution reaction (CER) through chlor-alkali electrolysis. The RuO2 electrocatalyst serves as the main active component widely used in commercial applications. However, oxygen evolution reaction (OER) generally competes with CER electrocatalysts at RuO2 electrocatalyst owing to the intrinsically scaling reaction energy barrier of *OCl and *OOH intermediates, leading to decreased CER selectivity, high energy consumption, and increased cost. Here, the effect of Ag doping on selective CER over RuO2 electrocatalysts prepared by a sol-gel method has been systematically studied. We found that Ag-doping can effectively improve the Faradaic efficiency of RuO2 electrocatalyst for CER. Furthermore, the improved CER selectivity of Ag-doped RuO2 electrocatalysts is highly dependent on the Ag-doping concentration. The optimized Ag0.15Ru0.85O2 electrocatalyst displays an overpotential of 105 mV along with a selectivity of 84.64 ± 1.84 % in 5.0 M NaCl electrolyte (pH = 2.0 ± 0.05), significantly outperforming undoped one (142 mV, 72.75 ± 1.52 %). Our experiments and density functional theory (DFT) calculations show electron transfer from Ag+ to Ru4+ suppresses *OOH intermediates desorption on Ag-doped RuO2, enabling improved CER selectivity. Such designs of Ag-doped RuO2 electrocatalysts are expected to be favorable for practical chlor-alkali applications.
Collapse
Affiliation(s)
- Yinlong Cheng
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, PR China
| | - Pengyu Meng
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, PR China.
| | - Liansheng Li
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, PR China
| | - Lixiang Zhong
- Beijing Key Lab of Precision Spectroscopy and Optoelectronic Technology, School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chengzong Yuan
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, PR China
| | - Jie Chen
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qinghua Liang
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, PR China.
| |
Collapse
|
2
|
Sanchez-Castrillon S, Benítez LN, Vazquez-Arenas J, Ferraro F, Palma-Goyes RE. Reaction Mechanism of Oxytetracycline Degradation by Electrogenerated Reactive Chlorine: The Influence of Current Density and pH. ACS OMEGA 2024; 9:46302-46311. [PMID: 39583723 PMCID: PMC11579939 DOI: 10.1021/acsomega.4c07234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
A binary dimensionally stable anode Ti/TiO2-RuO2 electrode was used to abate the antibiotic oxytetracycline (OTC) (C22H24N2O9) in chloride water. The anode was prepared using the Pechini method and subsequently characterized by X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), and cyclic voltammetry (CV). The optimum values of the operational parameters affecting removal efficiency were determined using a 2 × 3 factorial design by screening j (6.0, 10, and 20 A m-2) and pH (3, 6.5, and 10). The textural analysis revealed the formation of active oxides (RuO2 and TiO2 coating rutile-type P42/mnm, space group 136), with a cracked surface and good dispersion of metal components. A contour graph verified that the most suitable condition for contaminant degradation was 20 A m-2 at a circumneutral pH of 6.5, resulting in approximately 97% degradation after 20 min of electrolysis according to pseudo-first-order reaction kinetics and the loss of the antibiotic activity of OTC. In addition, the results of oxidant formation and CV indicate that the best electrochemical activation of the anode to form Cl2-active mainly depended on pH. Liquid chromatography-mass spectrometry (LC-MS) and density functional theory were employed to propose a reaction pathway for OTC degradation. Three byproducts with m/z 426, 256, and 226 were identified corresponding to the removal of amide and amine groups, which are susceptible sites to electrophilic attack by active chlorine species. The findings from this work stand out for prospective applications of anodic electrochemical oxidation to efficiently eliminate antibiotics with similar chemical structures in wastewater containing chlorides.
Collapse
Affiliation(s)
| | - Luis Norberto Benítez
- Departamento
de Química, Universidad del Valle, Calle 13 # 100-00, Santiago de Cali CP 760032, Colombia
| | - Jorge Vazquez-Arenas
- Centro
Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, Ciudad de México 07340, Mexico
| | - Franklin Ferraro
- Departamento
de Ciencias Básicas, Universidad
Católica Luis Amigó, Transversal, 51A, #67B 90, Medellín 050034, Colombia
| | - Ricardo E. Palma-Goyes
- Departamento
de Química, Universidad del Valle, Calle 13 # 100-00, Santiago de Cali CP 760032, Colombia
| |
Collapse
|
3
|
Li S, Lin Y, Liu G, Shi C. Research status of volatile organic compound (VOC) removal technology and prospect of new strategies: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:727-740. [PMID: 36897314 DOI: 10.1039/d2em00436d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important component of air pollution, the efficient removal of volatile organic compounds (VOCs) is one of the most important challenges in the world. VOCs are harmful to the environment and human health. This review systematically introduced the main VOC control technologies and research hotspots in recent years, and expanded the description of electrocatalytic oxidation technology and bimetallic catalytic removal technology. Based on a three-dimensional electrode reactor, the theoretical design of a VOC removal control technology using bimetallic three-dimensional particle electrode electrocatalytic oxidation was proposed for the first time. The future research focus of this method was analyzed, and the importance of in-depth exploration of the catalytic performance of particle electrodes and the system reaction mechanism was emphasized. This review provides a new idea for using clean and efficient methods to remove VOCs.
Collapse
Affiliation(s)
- Siwen Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, Jilin 130117, China.
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Gen Liu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, Jilin 130117, China.
| | - Chunyan Shi
- The University of Kitakyushu, 1-1 Hibikino Wakamatsuku Kitakyushu, Fukuoka, Japan
| |
Collapse
|
4
|
Ren Q, Yang R, Li J, Yan W, Wang Z, Wu A. Fabrication of Ru/Ir doped TiO
2
electrode for electrocatalytic degradation of phenol. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Qiaolin Ren
- College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan China
| | - Ruirui Yang
- College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan China
| | - Junying Li
- College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan China
| | - Wenjun Yan
- Analytical Instrumentation Center, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan China
| | - Zhongde Wang
- College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan China
| | - Ailian Wu
- College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan China
| |
Collapse
|
5
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Palma-Goyes RE, Sosa-Rodríguez FS, Rivera FF, Vazquez-Arenas J. Modeling the sulfamethoxazole degradation by active chlorine in a flow electrochemical reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42201-42214. [PMID: 34467494 DOI: 10.1007/s11356-021-16154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study is to propose a continuous physicochemical model accounting for the active chlorine production used to degrade recalcitrant sulfamethoxazole (SMX) in an electrochemical flow reactor. The computational model describes the fluid mechanics and mass transfer occurring in the re/actor, along with the electrode kinetics of hydrogen evolution reaction arising on a stainless steel cathode, and the chloride oxidation on a DSA. Specifically, the anodic contributions assume the heterogeneous nature of the adsorbed chlorine species formed on this surface, which are a model requirement to correctly define the experimental reactor performance and degradation efficiency of the contaminant. The experimental validation conducted at different applied current densities, volumetric flows, and chloride concentrations is adequately explained by the model, thus evidencing some of the phenomena controlling the electrocatalytic chlorine production for environmental applications. The best conditions to eliminate the SMX are proposed based on the theoretical analysis of the current efficiency calculated with the model, and experimentally confirmed. The use of the Ti/RuO2-ZrO2-Sb2O3 anode at the bench scale improves the SMX removal by using electro-generated chlorine species adsorbed on its surface, which remarkably increases the oxidation potential of the system along with chlorine desorbed from the electrode. This is a technological innovation concerning other mediated oxidation methods entirely using oxidants in solution.
Collapse
Affiliation(s)
- Ricardo E Palma-Goyes
- Departamento de Química, Universidad del Valle, Santiago de Cali, Calle 13 # 100-00, CP 760032, Colombia
| | - Fabiola S Sosa-Rodríguez
- Research Area of Growth and Environment, Metropolitan Autonomous University, Azcapotzalco (UAM-A), Av. San Pablo 180, 02200, Mexico City, Mexico
| | - Fernando F Rivera
- CONACYT - Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, 76703, Querétaro, Mexico.
| | - Jorge Vazquez-Arenas
- CONACYT-Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No 186, 09340, Mexico City, Mexico.
| |
Collapse
|
7
|
Rai D, Sinha S. Research trends in the development of anodes for electrochemical oxidation of wastewater. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The review focuses on the recent development in anode materials and their synthesis approach, focusing on their compatibility for treating actual industrial wastewater, improving selectivity, electrocatalytic activity, stability at higher concentration, and thereby reducing the mineralization cost for organic pollutant degradation. The advancement in sol–gel technique, including the Pechini method, is discussed in the first section. A separate discussion related to the selection of the electrodeposition method and its deciding parameters is also included. Furthermore, the effect of using advanced heating approaches, including microwave and laser deposition synthesis, is also discussed. Next, a separate discussion is provided on using different types of anode materials and their effect on active •OH radical generation, activity, and electrode stability in direct and indirect oxidation and future aspects. The effect of using different synthesis approaches, additives, and doping is discussed separately for each anode. Graphene, carbon nanotubes (CNTs), and metal doping enhance the number of active sites, electrochemical activity, and mineralization current efficiency (MCE) of the anode. While, microwave or laser heating approaches were proved to be an effective, cheaper, and fast alternative to conventional heating. The electrodeposition and nonaqueous solvent synthesis were convenient and environment-friendly techniques for conductive metallic and polymeric film deposition.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Shishir Sinha
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
8
|
Zhu X, Hu W, Feng C, Chen N, Chen H, Kuang P, Deng Y, Ma L. Electrochemical oxidation of aniline using Ti/RuO 2-SnO 2 and Ti/RuO 2-IrO 2 as anode. CHEMOSPHERE 2021; 269:128734. [PMID: 33143899 DOI: 10.1016/j.chemosphere.2020.128734] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Electrocatalytic properties of anode and the electrolyte composition are important parameters influence the degradation efficiency for aniline wastewater. Ti/RuO2-SnO2 and Ti/RuO2-IrO2 have been fabricated using thermal decomposition method and experiments in electrolyte containing 0.05 M Na2SO4, 0.05 M NaCl and 0.05 M Na2SO4+0.005 M FeSO4 at different current density were conducted to study the influence on aniline degradation. Linear sweep voltammetry (LSV) showed that Ti/RuO2-SnO2 had higher oxygen evolution potential and degrade aniline through electrochemical transformation and electrochemical combustion while Ti/RuO2-IrO2 degrade aniline mainly through electrochemical transformation. The study showed that Ti/RuO2-SnO2 had higher electrocatalytic activity towards the degradation of aniline than Ti/RuO2-IrO2 anode in 0.05 M Na2SO4 and in 0.05 M NaCl electrolyte. The maximum TOC removal efficiency for Ti/RuO2-SnO2 was 64.2% at 40 mA cm-2 in Na2SO4 electrolyte while the average MCE was 1.6% and the average ECTOC was 1.51 kWh (g TOC)-1. On the contrary, the maximum TOC removal efficiency for Ti/RuO2-IrO2 was 63.1% at 40 mA cm-2 in NaCl electrolyte while the average MCE was 1.6% and the average ECTOC was 1.95 kWh (g TOC)-1. The presence of Fe2+ in Na2SO4 electrolyte would decrease the TOC removal efficiency except at low current density (20 mA cm-2) for Ti/RuO2-SnO2. These results indicated that Ti/RuO2-SnO2 and Ti/RuO2-IrO2 anode were suitable in Na2SO4 and NaCl electrolyte, respectively, while the presence of Fe2+ would inhibit aniline degradation.
Collapse
Affiliation(s)
- Xu Zhu
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weiwu Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China; The Journal Center, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hongyan Chen
- College of Science, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing, 100083, PR China
| | - Peijing Kuang
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yang Deng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Linlin Ma
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
9
|
Hu J, Xu H, Feng X, Lei L, He Y, Zhang X. Neodymium‐Doped IrO
2
Electrocatalysts Supported on Titanium Plates for Enhanced Chlorine Evolution Reaction Performance. ChemElectroChem 2021. [DOI: 10.1002/celc.202100147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiajun Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
- Institute of Zhejiang University-Quzhou 324000 Quzhou
| | - Haoran Xu
- Zhejiang Provincial Key Laboratory of Energy Efficiency and Pollution Control Technology for Thermal Power Generation 311121 Hangzhou
- Zhejiang Energy Group R&D Co., Ltd. 310003 Hangzhou
| | - Xiangdong Feng
- Zhejiang Provincial Key Laboratory of Energy Efficiency and Pollution Control Technology for Thermal Power Generation 311121 Hangzhou
- Zhejiang Energy Group R&D Co., Ltd. 310003 Hangzhou
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
- Institute of Zhejiang University-Quzhou 324000 Quzhou
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
- Institute of Zhejiang University-Quzhou 324000 Quzhou
| |
Collapse
|
10
|
Patel SR, Patel RH, Patel MP. Eco-friendly bioadsorbent-based polymer composites as a pH-responsive material for selective removal of anionic and azo dyes from aqueous solutions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1827957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shital R. Patel
- Department of Chemistry, Sardar Patel University, Gujarat, India
| | - Rasmika H. Patel
- Department of Materials Science, Sardar Patel University, Gujarat, India
| | - Manish P. Patel
- Department of Chemistry, Sardar Patel University, Gujarat, India
| |
Collapse
|
11
|
Dendrimer assisted dye-removal: A critical review of adsorption and catalytic degradation for wastewater treatment. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113775] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Palma-Goyes RE, Rivera FF, Vazquez-Arenas J. Heterogeneous Model To Distinguish the Activity of Electrogenerated Chlorine Species from Soluble Chlorine in an Electrochemical Reactor. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ricardo E. Palma-Goyes
- Grupo CATALAD, Instituto de Química, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Fernando F. Rivera
- CONACYT—Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo 76703, Querétaro, Mexico
| | - Jorge Vazquez-Arenas
- CONACYT—Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No 186, CDMX 09340, Mexico
| |
Collapse
|
13
|
Daud M, Hai A, Banat F, Wazir MB, Habib M, Bharath G, Al-Harthi MA. A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH) – Containing hybrids as promising adsorbents for dyes removal. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110989] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Enhanced photoelectrocatalytic breakdown of Cu-cyanide complexes and copper recovery using photoelectrogenerated free chlorine. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
15
|
Elaissaoui I, Akrout H, Grassini S, Fulginiti D, Bousselmi L. Effect of coating method on the structure and properties of a novel PbO 2 anode for electrochemical oxidation of Amaranth dye. CHEMOSPHERE 2019; 217:26-34. [PMID: 30396047 DOI: 10.1016/j.chemosphere.2018.10.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
This study deals with the electrochemical degradation of Amaranth in aqueous solution by means of stainless steel (SS) electrodes coated with a SiOx interlayer deposited by Plasma Enhanced Chemical Vapour Deposition and a modified PbO2 top layer deposited by continuous galvanostatic electrodeposition. The morphological characterization of the PbO2 top-layer performed by Field Emission Scanning Electron Microscope put in evidence that the SiOx, interlayer allows obtaining a more integrated PbO2/SS electrode with a very homogeneous PbO2 film. The composition of the lead oxide layer was investigated by X-ray Diffractometry, showing that the β-PbO2/α-PbO2 ratio in the top layer deposited on the SiOx film was four times higher respect to the one deposited directly on the stainless steel surface. In addition, the electrochemical behaviour of SS/SiOx/PbO2 interfaces was studied by electrochemical impedance spectroscopy (EIS). The EIS results showed that the presence of SiOx favors electron transfer within the oxide layer which improves electro-oxidation capability. Moreover, bulk electrolysis showed that over 100% colour removal and 84% COD removal, using SS/SiOx/PbO2 at acidic pH were reached after 300 min. High Performance Liquid Chromatography analysis was used for the quantitative determinations of initial Amaranth dye molecule removal and to evaluate its specific degradation rate. In order to evaluate the phototoxicity of treated solution with different by-products, different tests of germination were performed and proved that the electrochemical treatment with modified PbO2 could be as an efficient technology for reducing hazardous wastewater toxicity and able to produce water available for reuse.
Collapse
Affiliation(s)
- Ines Elaissaoui
- Laboratory of Wastewaters and Environment, Center of Water Researches & Technology (CERTE), Borj Cédria PB 273, Soliman 8020, Tunisia
| | - Hanene Akrout
- Laboratory of Wastewaters and Environment, Center of Water Researches & Technology (CERTE), Borj Cédria PB 273, Soliman 8020, Tunisia.
| | - Sabrina Grassini
- Department of Applied Science and Technology, Polytechnic of Turin, Turin, Italy
| | - Daniele Fulginiti
- Department of Applied Science and Technology, Polytechnic of Turin, Turin, Italy
| | - Latifa Bousselmi
- Laboratory of Wastewaters and Environment, Center of Water Researches & Technology (CERTE), Borj Cédria PB 273, Soliman 8020, Tunisia
| |
Collapse
|
16
|
Perea LA, Palma-Goyes RE, Vazquez-Arenas J, Romero-Ibarra I, Ostos C, Torres-Palma RA. Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes: Role of bath composition, analysis of degradation pathways and degradation extent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:377-387. [PMID: 30121037 DOI: 10.1016/j.scitotenv.2018.08.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
The elimination of cephalexin (CPX) using electro-generated Cl2-active on Ti/RuO2-IrO2 anode was assessed in different effluents: deionized water (DW), municipal wastewater (MWW) and urine. Single Ti/RuO2 and Ti/IrO2 catalysts were prepared to compare their morphologies and electrochemical behavior against the binary DSA. XRD and profile refinement suggest that Ti/RuO2-IrO2 forms a solid solution, where RuO2 and IrO2 growths are oriented by the TiO2 substrate through substitution of Ir by Ru atoms within its rutile-type structure. SEM reveals mud-cracked structures with flat areas for all catalysts, while EDS analysis indicates atomic ratios in the range of the oxide stoichiometries in the nominal concentrations used during synthesis. A considerably higher CPX degradation is achieved in the presence of NaCl than in Na2SO4 or Na3PO4 media due to the active chlorine generation. A faster CPX degradation is reached when the current density is increased or the pH value is lowered. This last behavior may be ascribed to an acid-catalyzed reaction between HClO and CPX. Degradation rates of 22.5, 3.96, and 0.576 μmol L-1 min-1 were observed for DW, MWW and urine, respectively. The lower efficiency measured in these last two effluents was related to the presence of organic matter and urea in the matrix. A degradation pathway is proposed based on HPLC-DAD and HPLC-MS analysis, indicating the fast formation (5 min) of CPX-(S)-sulfoxide and CPX-(R)-sulfoxide, generated due the Cl2-active attack at the CPX thioether. Furthermore, antimicrobial activity elimination of the treated solution is reached once CPX, and the initial by-products are considerably eliminated. Finally, even if only 16% of initial TOC is removed, BOD5 tests prove the ability of electro-generated Cl2-active to transform the antibiotic into biodegradable compounds. A similar strategy can be used for the abatement of other recalcitrant compounds contained in real water matrices such as urine and municipal wastewaters.
Collapse
Affiliation(s)
- Lic A Perea
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Ricardo E Palma-Goyes
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas-Instituto Politécnico Nacional, Av. IPN No. 2580, Gustavo A. Madero, C.P. 07340 Ciudad de México, Mexico.
| | - Jorge Vazquez-Arenas
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Avenida Acueducto s/n, Col. La Laguna Ticomán, 07340 Ciudad de México, Mexico
| | - Issis Romero-Ibarra
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas-Instituto Politécnico Nacional, Av. IPN No. 2580, Gustavo A. Madero, C.P. 07340 Ciudad de México, Mexico
| | - Carlos Ostos
- Grupo CATALAD, Instituto de Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
17
|
Deng L, Liu Y, Zhao G, Chen J, He S, Zhu Y, Chai B, Ren Z. Preparation of electrolyzed oxidizing water by TiO2 doped IrO2-Ta2O5 electrode with high selectivity and stability for chlorine evolution. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Santos JEL, de Moura DC, da Silva DR, Panizza M, Martínez-Huitle CA. Application of TiO2-nanotubes/PbO2 as an anode for the electrochemical elimination of Acid Red 1 dye. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4134-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Cho WC, Poo KM, Mohamed HO, Kim TN, Kim YS, Hwang MH, Jung DW, Chae KJ. Non-selective rapid electro-oxidation of persistent, refractory VOCs in industrial wastewater using a highly catalytic and dimensionally stable IrPd/Ti composite electrode. CHEMOSPHERE 2018; 206:483-490. [PMID: 29778073 DOI: 10.1016/j.chemosphere.2018.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Volatile organic compounds (VOCs) are highly toxic contaminants commonly dissolved in industrial wastewater. Therefore, treatment of VOC-containing wastewater requires a robust and rapid reaction because liquid VOCs can become volatile secondary pollutants. In this study, electro-oxidation with catalytic composite dimensionally stable anodes (DSAs)-a promising process for degrading organic pollutants-was applied to remove various VOCs (chloroform, benzene, toluene, and trichloroethylene). Excellent treatment efficiency of VOCs was demonstrated. To evaluate the VOC removal rate of each DSA, a titanium plate, a frequently used substratum, was coated with four different highly electrocatalytic composite materials (platinum group metals), Ir, IrPt, IrRu, and IrPd. Ir was used as a base catalyst to maintain the electrochemical stability of the anode. Current density and electrolyte concentration were evaluated over various ranges (20-45 mA/cm2 and 0.01-0.15 mol/L as NaCl, respectively) to determine the optimum operating condition. Results indicated that chloroform was the most refractory VOC tested due to its robust chemical bond strength. Moreover, the optimum current density and electrolyte concentration were 25 mA/cm2 and 0.05 M, respectively, representing the most cost-effective condition. Four DSAs were examined (Ir/Ti, IrPt/Ti, IrRu/Ti, and IrPd/Ti). The IrPd/Ti anode was the most suitable for treatment of VOCs presenting the highest chloroform removal performance of 78.8%, energy consumption of 0.38 kWh per unit mass (g) of oxidized chloroform, and the least volatilized fraction of 4.4%. IrPd/Ti was the most suitable anode material for VOC treatment because of its unique structure, high wettability, and high surface area.
Collapse
Affiliation(s)
- Wan-Cheol Cho
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea
| | - Kyung-Min Poo
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea
| | - Hend Omar Mohamed
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea
| | - Tae-Nam Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea
| | - Yul-Seong Kim
- Department of Logistics System Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Moon Hyun Hwang
- Headquarter of Research Plan, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Do-Won Jung
- Technique Laboratory, Techwin Co., 60 Jikji-daero 474 beon-gil, Heungdeok-gu, Cheongju-city, Chungbuk 28580, Republic of Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea.
| |
Collapse
|
20
|
Palma-Goyes R, Vazquez-Arenas J, Ostos C, Manzo-Robledo A, Romero-Ibarra I, Calderón J, González I. In search of the active chlorine species on Ti/ZrO2-RuO2-Sb2O3 anodes using DEMS and XPS. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Santos JEL, Antonio Quiroz M, Cerro-Lopez M, de Moura DC, Martínez-Huitle CA. Evidence for the electrochemical production of persulfate at TiO2 nanotubes decorated with PbO2. NEW J CHEM 2018. [DOI: 10.1039/c7nj02604h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this work is to study the viability of using TiO2 nanotube arrays decorated with PbO2 to electrochemically produce persulfate
Collapse
Affiliation(s)
- José Eudes L. Santos
- Federal University of Rio Grande do Norte
- Institute of Chemistry
- Lagoa Nova – CEP 59.072-970
- Brazil
| | - Marco Antonio Quiroz
- Universidad de las Américas Puebla
- Grupo de Investigación en Energía y Ambiente
- ExHda
- Cholula 72820
- Mexico
| | - Monica Cerro-Lopez
- Universidad de las Américas Puebla
- Grupo de Investigación en Energía y Ambiente
- ExHda
- Cholula 72820
- Mexico
| | - Dayanne Chianca de Moura
- Federal University of Rio Grande do Norte
- Institute of Chemistry
- Lagoa Nova – CEP 59.072-970
- Brazil
| | - Carlos A. Martínez-Huitle
- Federal University of Rio Grande do Norte
- Institute of Chemistry
- Lagoa Nova – CEP 59.072-970
- Brazil
- UNESP
| |
Collapse
|
22
|
Ming R, Zhu Y, Deng L, Zhang A, Wang J, Han Y, Chai B, Ren Z. Effect of electrode material and electrolysis process on the preparation of electrolyzed oxidizing water. NEW J CHEM 2018. [DOI: 10.1039/c8nj01076e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The efficient preparation of EO water can be controlled by different electrode materials and electrolysis processes.
Collapse
Affiliation(s)
- Ruoxi Ming
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Yuchan Zhu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Li Deng
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Ailian Zhang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Ju Wang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Yongqi Han
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Bo Chai
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| |
Collapse
|
23
|
Chen Z, Zhu J, Zhang S, Shao Y, Lin D, Zhou J, Chen Y, Tang D. Influence of the electronic structures on the heterogeneous photoelectrocatalytic performance of Ti/Ru xSn 1-xO 2 electrodes. JOURNAL OF HAZARDOUS MATERIALS 2017; 333:232-241. [PMID: 28363144 DOI: 10.1016/j.jhazmat.2017.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 06/07/2023]
Abstract
DSA-type Ti/RuxSn1-xO2 electrodes were prepared by thermal decomposition method as photoelectrocatalysts (PECs) and extensively characterized by various sophisticated techniques. First-principles calculations was employed to study the effects of Ru content on the electronic structures of the RuxSn1-xO2 coatings. The photoelectric-synergistic catalytic activity of the Ti/RuxSn1-xO2 electrodes was evaluated for the degradation of methyl orange (MO) in aqueous solution. The results show that the RuO2-SnO2 solid solution could be formed. The band gaps of the RuxSn1-xO2 coatings gradually decreased and eventually turned into metallic conductivity with the increase of ruthenium content. As a PEC electrode, reducing band gap is helpful to improve electronic conductivity and the electrocatalytic activity, but not always advantageous to increase the photocatalytic activity. Because too narrow band gap will sacrifice the photogenerated charge carriers and thus reduce photocatalytic activity of the electrode. In our experiments, the rate constant of Ti/Ru0.05Sn0.95O2 electrode increased with increasing Ru content and exhibited the maximum rate for 5% Ru loading. The stability test showed the photoelectrocatalytic activity of the Ti/Ru0.05Sn0.95O2 electrode almost had no attenuation after 100h photoelectrolysis, revealing that this electrode has good long-term stability.
Collapse
Affiliation(s)
- Zhijie Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Junqiu Zhu
- School of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
| | - Shuai Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yanqun Shao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Deyuan Lin
- Electric Power Research Institute of State Grid Fujian Electric Power Co. Ltd., Fuzhou 350007, China.
| | - Jianfeng Zhou
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yunxiang Chen
- Electric Power Research Institute of State Grid Fujian Electric Power Co. Ltd., Fuzhou 350007, China.
| | - Dian Tang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
24
|
Ahmed MA, Brick AA, Mohamed AA. An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route. CHEMOSPHERE 2017; 174:280-288. [PMID: 28183053 DOI: 10.1016/j.chemosphere.2017.01.147] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
A new approach for removal of indigo carmine blue (IC) dye which is extensively used in jeans manufacture was successfully performed on novel mesoporous [LDH] nanoparticles prepared by sol-gel route using CTAB as shape and pore directing agent. The physicochemical features were monitored by X-ray diffraction (XRD), Fourier transformer infra-red (FTIR), N2 adsorption-desorption isotherm, Field emission electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). The influence of reaction parameters affecting dye adsorption including contact time, initial dye concentration, pH and temperature were investigated. Textural analysis and HRTEM images indicate the existence of mesoporous spherical nanoparticles of size = 26 nm connected to each other's and embedded large numbers of mesopores of average pore radius = 43.5 Å. A successful adsorption of IC on LDH nanoparticles of surface area = 85.6 m2/g at various pH with maximum adsorption capacity = 62.8 mg/g at pH = 9.5. Langmuir model is more favorable to describe the adsorption of IC rather than Freundlich model which reflecting the preferential formation of monolayer on the surface of LDH. Both film diffusion and the intraparticle diffusion affect the dye adsorption. The values of enthalpy change (ΔH) for and (ΔS) are + 28.18 and + 0.118 kJ/mol, respectively indicating that the removal process is endothermic. The results indicated that LDH nanoparticles conserved a good activity even after five consecutive cycles of reuse. Our results suggest that mesoporous LDH nanoparticles are considered a potential novel adsorbent for remediation of wastewater containing IC.
Collapse
Affiliation(s)
- M A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Egypt.
| | - A A Brick
- Chemistry Department, Faculty of Science, Ain Shams University, Egypt
| | - A A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Egypt
| |
Collapse
|
25
|
Jojoa-Sierra SD, Silva-Agredo J, Herrera-Calderon E, Torres-Palma RA. Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO 2 anodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1228-1238. [PMID: 27720251 DOI: 10.1016/j.scitotenv.2016.09.201] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/24/2016] [Accepted: 09/24/2016] [Indexed: 06/06/2023]
Abstract
The electrochemical degradation of the fluoroquinolone antibiotic norfloxacin (NOR) on Ti/IrO2 anodes, in several aqueous matrices was evaluated. For this purpose, initially the performance and degradation routes of the technology at several pH values (3.0, 6.5, 7.5 and 9.0) and in the presence of some of the most common anions in real water matrices (Cl-, HCO3-, SO42- and NO3-) were determined. The results showed that the degradation of NOR can occur through both direct elimination at the electrode surface and mediated oxidation, via the electrogeneration of oxidative agents, such as active chlorine species and percarbonate ions, which come from chloride and bicarbonate oxidation, respectively. Conversely, nitrate ions showed to inhibit the efficiency of the system. Concerning the pH, the efficiency of the process in the presence of chloride ions followed the order: 9.0>7.5>6.5>3.0; showing a strong dependence of the NOR speciation, and being the anionic form of the antibiotic the more susceptible to be oxidized. Furthermore, the identification of three primary NOR by-products demonstrated that the initial attack of the active chlorine species, mainly HOCl, occurred at the secondary amine of the piperazine ring followed by chlorination of the benzene ring. The precedent findings were crucial to understand the efficiency of the technology to eliminate NOR in synthetic complex matrices such as seawater, municipal wastewater and urine. The electrochemical oxidation showed to be promissory to eliminate NOR, and its associated antimicrobial activity, in such complexes matrices. Waters at basic pH containing chloride or bicarbonate ions, such as seawater or municipal wastewater showed to be the most adapted to the application of the technology. Additionally, nitrate ions or urea, found in some matrices like fresh urine, reduce the efficiency of the process.
Collapse
Affiliation(s)
- Sindy D Jojoa-Sierra
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Javier Silva-Agredo
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | | | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
26
|
Palma-Goyes RE, Vazquez-Arenas J, Ostos C, Ferraro F, Torres-Palma RA, Gonzalez I. Microstructural and electrochemical analysis of Sb 2 O 5 doped-Ti/RuO 2 -ZrO 2 to yield active chlorine species for ciprofloxacin degradation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.150] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Treatment of Amaranth dye in aqueous solution by using one cell or two cells in series with active and non-active anodes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Gackowska A, Przybyłek M, Studziński W, Gaca J. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1886-97. [PMID: 26408113 PMCID: PMC4713459 DOI: 10.1007/s11356-015-5444-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/15/2015] [Indexed: 05/05/2023]
Abstract
In this study, a new degradation path of sunscreen active ingredient, 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-methoxycinnamic acid (MCA) in the presence of sodium hypochlorite (NaOCl), was discussed. The reaction products were detected using gas chromatography-mass spectrometry (GC-MS). Since HOCl treatment leads to more polar products than EHMC, application of polar extracting agents, dichloromethane and ethyl acetate/n-hexane mixture, gave better results in terms of chlorinated breakdown products identification than n-hexane. Reaction of EHMC with HOCl lead to the formation of C=C bridge cleavage products such as 2-ethylhexyl chloroacetate, 1-chloro-4-methoxybenzene, 1,3-dichloro-2-methoxybenzene, and 3-chloro-4-methoxybenzaldehyde. High reactivity of C=C bond attached to benzene ring is also characteristic for MCA, since it can be converted in the presence of HOCl to 2,4-dichlorophenole, 2,6-dichloro-1,4-benzoquinone, 1,3-dichloro-2-methoxybenzene, 1,2,4-trichloro-3-methoxybenzene, 2,4,6-trichlorophenole, and 3,5-dichloro-2-hydroxyacetophenone. Surprisingly, in case of EHMC/HOCl/UV, much less breakdown products were formed compared to non-UV radiation treatment. In order to describe the nature of EHMC and MCA degradation, local reactivity analysis based on the density functional theory (DFT) was performed. Fukui function values showed that electrophilic attack of HOCl to the C=C bridge in EHMC and MCA is highly favorable (even more preferable than phenyl ring chlorination). This suggests that HOCl electrophilic addition is probably the initial step of EHMC degradation.
Collapse
Affiliation(s)
- Alicja Gackowska
- Faculty of Chemical Technology and Engineering, University of Technology and Life Science, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Maciej Przybyłek
- Department of Physical Chemistry, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950, Bydgoszcz, Poland.
| | - Waldemar Studziński
- Faculty of Chemical Technology and Engineering, University of Technology and Life Science, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Jerzy Gaca
- Faculty of Chemical Technology and Engineering, University of Technology and Life Science, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| |
Collapse
|