1
|
Zdarta J, Kołodziejczak-Radzimska A, Bachosz K, Rybarczyk A, Bilal M, Iqbal HMN, Buszewski B, Jesionowski T. Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects. Adv Colloid Interface Sci 2023; 315:102889. [PMID: 37030261 DOI: 10.1016/j.cis.2023.102889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
The synergistic combination of current biotechnological and nanotechnological research has turned to multienzyme co-immobilization as a promising concept to design biocatalysis engineering. It has also intensified the development and deployment of multipurpose biocatalysts, for instance, multienzyme co-immobilized constructs, via biocatalysis/protein engineering to scale-up and fulfil the ever-increasing industrial demands. Considering the characteristic features of both the loaded multienzymes and nanostructure carriers, i.e., selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness, multienzyme-based green biocatalysts have become a powerful norm in biocatalysis/protein engineering sectors. In this context, the current state-of-the-art in enzyme engineering with a synergistic combination of nanotechnology, at large, and nanomaterials, in particular, are significantly contributing and providing robust tools to engineer and/or tailor enzymes to fulfil the growing catalytic and contemporary industrial needs. Considering the above critics and unique structural, physicochemical, and functional attributes, herein, we spotlight important aspects spanning across prospective nano-carriers for multienzyme co-immobilization. Further, this work comprehensively discuss the current advances in deploying multienzyme-based cascade reactions in numerous sectors, including environmental remediation and protection, drug delivery systems (DDS), biofuel cells development and energy production, bio-electroanalytical devices (biosensors), therapeutical, nutraceutical, cosmeceutical, and pharmaceutical oriented applications. In conclusion, the continuous developments in nano-assembling the multienzyme loaded co-immobilized nanostructure carriers would be a unique way that could act as a core of modern biotechnological research.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Agnieszka Kołodziejczak-Radzimska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
2
|
Shafaat A, Žalnėravičius R, Ratautas D, Dagys M, Meškys R, Rutkienė R, Gonzalez-Martinez JF, Neilands J, Björklund S, Sotres J, Ruzgas T. Glucose-to-Resistor Transduction Integrated into a Radio-Frequency Antenna for Chip-less and Battery-less Wireless Sensing. ACS Sens 2022; 7:1222-1234. [PMID: 35392657 PMCID: PMC9040053 DOI: 10.1021/acssensors.2c00394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To maximize the potential of 5G infrastructure in healthcare, simple integration of biosensors with wireless tag antennas would be beneficial. This work introduces novel glucose-to-resistor transduction, which enables simple, wireless biosensor design. The biosensor was realized on a near-field communication tag antenna, where a sensing bioanode generated electrical current and electroreduced a nonconducting antenna material into an excellent conductor. For this, a part of the antenna was replaced by a Ag nanoparticle layer oxidized to high-resistance AgCl. The bioanode was based on Au nanoparticle-wired glucose dehydrogenase (GDH). The exposure of the cathode-bioanode to glucose solution resulted in GDH-catalyzed oxidation of glucose at the bioanode with a concomitant reduction of AgCl to highly conducting Ag on the cathode. The AgCl-to-Ag conversion strongly affected the impedance of the antenna circuit, allowing wireless detection of glucose. Mimicking the final application, the proposed wireless biosensor was ultimately evaluated through the measurement of glucose in whole blood, showing good agreement with the values obtained with a commercially available glucometer. This work, for the first time, demonstrates that making a part of the antenna from the AgCl layer allows achieving simple, chip-less, and battery-less wireless sensing of enzyme-catalyzed reduction reaction.
Collapse
Affiliation(s)
- Atefeh Shafaat
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 205 06, Sweden
- Biofilms−Research Center for Biointerfaces, Malmö University, Malmö 205 06, Sweden
| | - Rokas Žalnėravičius
- State Research Institute, Centre for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius LT-10257, Lithuania
| | - Dalius Ratautas
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, Vilnius LT-10223, Lithuania
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio al. 11, Vilnius LT-10223, Lithuania
| | - Marius Dagys
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, Vilnius LT-10223, Lithuania
| | - Rolandas Meškys
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, Vilnius LT-10223, Lithuania
| | - Rasa Rutkienė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, Vilnius LT-10223, Lithuania
| | - Juan Francisco Gonzalez-Martinez
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 205 06, Sweden
- Biofilms−Research Center for Biointerfaces, Malmö University, Malmö 205 06, Sweden
| | - Jessica Neilands
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö 205 06, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 205 06, Sweden
- Biofilms−Research Center for Biointerfaces, Malmö University, Malmö 205 06, Sweden
| | - Javier Sotres
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 205 06, Sweden
- Biofilms−Research Center for Biointerfaces, Malmö University, Malmö 205 06, Sweden
| | - Tautgirdas Ruzgas
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö 205 06, Sweden
- Biofilms−Research Center for Biointerfaces, Malmö University, Malmö 205 06, Sweden
| |
Collapse
|
3
|
Teišerskytė V, Urbonavičius J, Ratautas D. A direct electron transfer formaldehyde dehydrogenase biosensor for the determination of formaldehyde in river water. Talanta 2021; 234:122657. [PMID: 34364466 DOI: 10.1016/j.talanta.2021.122657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/31/2023]
Abstract
In this work, we report the construction of a direct electron transfer (DET) biosensor based on NAD-dependent formaldehyde dehydrogenase from Pseudomonas sp. (FDH) immobilized on the gold nanoparticle-modified gold electrode. To the best of our knowledge, a DET for FDH was achieved for the first time - the oxidation of formaldehyde started at a low electrode potential of -190 mV vs. Ag/AgCl and reached a maximum current density of 1100 nA cm-2 at 200 mV vs. Ag/AgCl. Also, the designed electrode was insensitive to substrate inhibition (in comparison to the free enzyme) and operated in solutions with formaldehyde concentrations up to 10 mM. The electrode was used and characterized as a mediatorless biosensor for the detection of formaldehyde. The biosensor demonstrated a limit of detection (0.05 mM), linear range from 0.25 to 2.0 mM, the sensitivity of 178.9 nA mM cm-2, high stability and selectivity. The biosensor has been successfully tested for the determination of added formaldehyde concentration in river water samples, thus the developed electrode could be applied for a fast, inexpensive and simple measurement of formaldehyde in various media.
Collapse
Affiliation(s)
- Viktorija Teišerskytė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania
| | - Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania
| | - Dalius Ratautas
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania; Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
4
|
Glucose-Oxygen Biofuel Cell with Biotic and Abiotic Catalysts: Experimental Research and Mathematical Modeling. ENERGIES 2020. [DOI: 10.3390/en13215630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The demand for alternative sources of clean, sustainable, and renewable energy has been a focus of research around the world for the past few decades. Microbial/enzymatic biofuel cells are one of the popular technologies for generating electricity from organic substrates. Currently, one of the promising fuel options is based on glucose due to its multiple advantages: high energy intensity, environmental friendliness, low cost, etc. The effectiveness of biofuel cells is largely determined by the activity of biocatalytic systems applied to accelerate electrode reactions. For this work with aerobic granular sludge as a basis, a nitrogen-fixing community of microorganisms has been selected. The microorganisms were immobilized on a carbon material (graphite foam, carbon nanotubes). The bioanode was developed from a selected biological material. A membraneless biofuel cell glucose/oxygen, with abiotic metal catalysts and biocatalysts based on a microorganism community and enzymes, has been developed. Using methods of laboratory electrochemical studies and mathematical modeling, the physicochemical phenomena and processes occurring in the cell has been studied. The mathematical model includes equations for the kinetics of electrochemical reactions and the growth of microbiological population, the material balance of the components, and charge balance. The results of calculations of the distribution of component concentrations over the thickness of the active layer and over time are presented. The data obtained from the model calculations correspond to the experimental ones. Optimization for fuel concentration has been carried out.
Collapse
|
5
|
Xu K, Chen X, Zheng R, Zheng Y. Immobilization of Multi-Enzymes on Support Materials for Efficient Biocatalysis. Front Bioeng Biotechnol 2020; 8:660. [PMID: 32695758 PMCID: PMC7338792 DOI: 10.3389/fbioe.2020.00660] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Multi-enzyme biocatalysis is an important technology to produce many valuable chemicals in the industry. Different strategies for the construction of multi-enzyme systems have been reported. In particular, immobilization of multi-enzymes on the support materials has been proved to be one of the most efficient approaches, which can increase the enzymatic activity via substrate channeling and improve the stability and reusability of enzymes. A general overview of the characteristics of support materials and their corresponding attachment techniques used for multi-enzyme immobilization will be provided here. This review will focus on the materials-based techniques for multi-enzyme immobilization, which aims to present the recent advances and future prospects in the area of multi-enzyme biocatalysis based on support immobilization.
Collapse
Affiliation(s)
- Kongliang Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Xuexiao Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Renchao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
6
|
Lopez-Barbosa N, Campaña AL, Cruz JC, Ornelas-Soto N, Osma JF. Enhanced Catalytic Dye Decolorization by Microencapsulation of Laccase from P. Sanguineus CS43 in Natural and Synthetic Polymers. Polymers (Basel) 2020; 12:polym12061353. [PMID: 32560036 PMCID: PMC7362170 DOI: 10.3390/polym12061353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
Polymeric microcapsules with the fungal laccase from Pycnoporus sanguineus CS43 may represent an attractive avenue for the removal or degradation of dyes from wastewaters. Microcapsules of alginate/chitosan (9.23 ± 0.12 µm) and poly(styrenesulfonate) (PSS) (9.25 ± 0.35 µm) were synthesized and subsequently tested for catalytic activity in the decolorization of the diazo dye Congo Red. Successful encapsulation into the materials was verified via confocal microscopy of labeled enzyme molecules. Laccase activity was measured as a function of time and the initial reaction rates were recovered for each preparation, showing up to sevenfold increase with respect to free laccase. The ability of substrates to diffuse through the pores of the microcapsules was evaluated with the aid of fluorescent dyes and confocal microscopy. pH and thermal stability were also measured for encapsulates, showing catalytic activity for pH values as low as 4 and temperatures of about 80 °C. Scanning electron microscope (SEM) analyses demonstrated the ability of PSS capsules to avoid accumulation of byproducts and, therefore, superior catalytic performance. This was corroborated by the direct observation of substrates diffusing in and out of the materials. Compared with our PSS preparation, alginate/chitosan microcapsules studied by others degrade 2.6 times more dye, albeit with a 135-fold increase in units of enzyme per mg of dye. Similarly, poly(vinyl) alcohol microcapsules from degrade 1.7 times more dye, despite an eightfold increase in units of enzyme per mg of dye. This could be potentially beneficial from the economic viewpoint as a significantly lower amount of enzyme might be needed for the same decolorization level achieved with similar encapsulated systems.
Collapse
Affiliation(s)
- Natalia Lopez-Barbosa
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (N.L.-B.); (A.L.C.)
- Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia;
| | - Ana Lucía Campaña
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (N.L.-B.); (A.L.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia;
| | - Nancy Ornelas-Soto
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico;
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (N.L.-B.); (A.L.C.)
- Correspondence: ; Tel.: +57-1-339-4949
| |
Collapse
|
7
|
Real-time glucose monitoring system containing enzymatic sensor and enzymatic reference electrodes. Biosens Bioelectron 2020; 164:112338. [PMID: 32553347 DOI: 10.1016/j.bios.2020.112338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 01/31/2023]
Abstract
Every electrochemical biosensor uses two or three electrode setup, which involves sensing electrode for a specific reaction, metal/salt reference electrode (i.e., Ag/AgCl or Hg/Hg2Cl2) for the control of the potential and, is some cases, counter electrode for the compensation of the current. This setup has significant flaws related to metal/salt reference electrodes: they are bulky and difficult to miniaturize, leak electrolyte to the medium, lose the ability to define the electrochemical potential precisely in time, consequently, have to be updated or replaced. This causes problems when the biosensor cannot be easily replaced (e.g., implanted electronics). Here we present a fully enzymatic real-time glucose monitoring system capable of referencing its own electrochemical potential. Using sensing electrode composed of wired glucose dehydrogenase and enzymatic reference electrode composed of wired laccase we have created a stable and accurate electrode system, which measured fluxes in concentration of glucose in a physiological range (3-8 mM), and demonstrated performance of the designed system in undiluted human serum. In addition, our designed enzymatic reference electrode is universal and may be applied for other biosensors, thus open possibilities for the new generation of implantable devices for healthcare monitoring.
Collapse
|
8
|
Gold-coated magnetic nanocatalyst containing wired oxidoreductases for mediatorless catalysis of carbohydrate oxidation by oxygen. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
9
|
Nanocatalysts Containing Direct Electron Transfer-Capable Oxidoreductases: Recent Advances and Applications. Catalysts 2019. [DOI: 10.3390/catal10010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Direct electron transfer (DET)-capable oxidoreductases are enzymes that have the ability to transfer/receive electrons directly to/from solid surfaces or nanomaterials, bypassing the need for an additional electron mediator. More than 100 enzymes are known to be capable of working in DET conditions; however, to this day, DET-capable enzymes have been mainly used in designing biofuel cells and biosensors. The rapid advance in (semi) conductive nanomaterial development provided new possibilities to create enzyme-nanoparticle catalysts utilizing properties of DET-capable enzymes and demonstrating catalytic processes never observed before. Briefly, such nanocatalysts combine several cathodic and anodic catalysis performing oxidoreductases into a single nanoparticle surface. Hereby, to the best of our knowledge, we present the first review concerning such nanocatalytic systems involving DET-capable oxidoreductases. We outlook the contemporary applications of DET-capable enzymes, present a principle of operation of nanocatalysts based on DET-capable oxidoreductases, provide a review of state-of-the-art (nano) catalytic systems that have been demonstrated using DET-capable oxidoreductases, and highlight common strategies and challenges that are usually associated with those type catalytic systems. Finally, we end this paper with the concluding discussion, where we present future perspectives and possible research directions.
Collapse
|
10
|
Okuda-Shimazaki J, Yoshida H, Sode K. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes. Bioelectrochemistry 2019; 132:107414. [PMID: 31838457 DOI: 10.1016/j.bioelechem.2019.107414] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 11/10/2019] [Indexed: 11/17/2022]
Abstract
The history of the development of glucose sensors goes hand-in-hand with the history of the discovery and the engineering of glucose-sensing enzymes. Glucose oxidase (GOx) has been used for glucose sensing since the development of the first electrochemical glucose sensor. The principle utilizing oxygen as the electron acceptor is designated as the first-generation electrochemical enzyme sensors. With increasing demand for hand-held and cost-effective devices for the "self-monitoring of blood glucose (SMBG)", second-generation electrochemical sensor strips employing electron mediators have become the most popular platform. To overcome the inherent drawback of GOx, namely, the use of oxygen as the electron acceptor, various glucose dehydrogenases (GDHs) have been utilized in second-generation principle-based sensors. Among the various enzymes employed in glucose sensors, GDHs harboring FAD as the redox cofactor, FADGDHs, especially those derived from fungi, fFADGDHs, are currently the most popular enzymes in the sensor strips of second-generation SMBG sensors. In addition, the third-generation principle, employing direct electron transfer (DET), is considered the most elegant approach and is ideal for use in electrochemical enzyme sensors. However, glucose oxidoreductases capable of DET are limited. One of the most prominent GDHs capable of DET is a bacteria-derived FADGDH complex (bFADGDH). bFADGDH has three distinct subunits; the FAD harboring the catalytic subunit, the small subunit, and the electron-transfer subunit, which makes bFADGDH capable of DET. In this review, we focused on the two representative glucose sensing enzymes, fFADGDHs and bFADGDHs, by presenting their discovery, sources, and protein and enzyme properties, and the current engineering strategies to improve their potential in sensor applications.
Collapse
Affiliation(s)
- Junko Okuda-Shimazaki
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Ratautas D, Ramonas E, Marcinkevičienė L, Meškys R, Kulys J. Wiring Gold Nanoparticles and Redox Enzymes: A Self-Sufficient Nanocatalyst for the Direct Oxidation of Carbohydrates with Molecular Oxygen. ChemCatChem 2018. [DOI: 10.1002/cctc.201701738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dalius Ratautas
- Faculty of Fundamental Sciences; Vilnius Gediminas Technical University; Saulėtekio al. 11 LT-10223 Vilnius Lithuania
- Institute of Biochemistry; Life Sciences Center, Vilnius University; Saulėtekio al. 7 LT-10257 Vilnius Lithuania
| | - Eimantas Ramonas
- Faculty of Fundamental Sciences; Vilnius Gediminas Technical University; Saulėtekio al. 11 LT-10223 Vilnius Lithuania
| | - Liucija Marcinkevičienė
- Institute of Biochemistry; Life Sciences Center, Vilnius University; Saulėtekio al. 7 LT-10257 Vilnius Lithuania
| | - Rolandas Meškys
- Institute of Biochemistry; Life Sciences Center, Vilnius University; Saulėtekio al. 7 LT-10257 Vilnius Lithuania
| | - Juozas Kulys
- Faculty of Fundamental Sciences; Vilnius Gediminas Technical University; Saulėtekio al. 11 LT-10223 Vilnius Lithuania
- Institute of Biochemistry; Life Sciences Center, Vilnius University; Saulėtekio al. 7 LT-10257 Vilnius Lithuania
| |
Collapse
|
12
|
Ratautas D, Tetianec L, Marcinkevičienė L, Meškys R, Kulys J. Bioanode with alcohol dehydrogenase undergoing a direct electron transfer on functionalized gold nanoparticles for an application in biofuel cells for glycerol conversion. Biosens Bioelectron 2017; 98:215-221. [PMID: 28683414 DOI: 10.1016/j.bios.2017.06.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/11/2017] [Accepted: 06/24/2017] [Indexed: 11/30/2022]
Abstract
In this paper we designed and investigated bioanode with alcohol dehydrogenase (ADH) catalysing oxidation of glycerol and glyceraldehyde. The most effective bioanode was fabricated when ADH was immobilized on gold nanoparticles (AuNPs) modified with 4-aminothiophenol. This electrode catalysed the oxidation of both glycerol and glyceraldehyde thus demonstrating a consecutive two-step process. The bioanode generated the current density of 510µAcm-2 at pH 7.0 and 0V vs. SCE. It was demonstrated that the electrode acted effectively due to the direct electron exchange between heme of ADH and modified AuNPs. The reversible oxidation and reduction of ADH heme proceeded at around -0.05V vs. SCE. The turnover number of the immobilized enzyme was estimated to be 65s-1 which is the same as the catalytic number of the enzyme in solution. To the best of our knowledge those parameters are the highest currently reported for the alcohol dehydrogenase bioanodes operating utilizing a direct electron transfer. As a proof of biofuels cell conception, the bioanode was combined with AuNPs-laccase biocathode. The biofuel cell generated maximum power output of 130µWcm-2 at 0.5V and pH 7.0.
Collapse
Affiliation(s)
- D Ratautas
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania; Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10223 Vilnius, Lithuania.
| | - L Tetianec
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania; Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10223 Vilnius, Lithuania
| | - L Marcinkevičienė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10223 Vilnius, Lithuania
| | - R Meškys
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10223 Vilnius, Lithuania
| | - J Kulys
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania; Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10223 Vilnius, Lithuania
| |
Collapse
|
13
|
Characterization of methylated azopyridine as a potential electron transfer mediator for electroenzymatic systems. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Ratautas D, Laurynėnas A, Dagys M, Marcinkevičienė L, Meškys R, Kulys J. High current, low redox potential mediatorless bioanode based on gold nanoparticles and glucose dehydrogenase from Ewingella americana. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|