1
|
Singh A, Ahmed E, Rather MD, Sundararajan A, Sharma A, Choudhary FS, Sundramoorthy AK, Dixit S, Vatin NI, Arya S. Marketing Strategies in Nanomaterials for Sensor Applications: Bridging Lab to Market. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400294. [PMID: 40352637 PMCID: PMC12065100 DOI: 10.1002/gch2.202400294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/19/2025] [Indexed: 05/14/2025]
Abstract
Nanomaterials have revolutionized sensor technology by offering enhanced sensitivity, selectivity, and miniaturization capabilities. However, the commercialization of nanomaterial-based sensors remains challenging due to the complexities involved in bridging laboratory innovations to market-ready products. This review article explores the various marketing strategies that can facilitate the successful commercialization of nanomaterials for sensor applications. It emphasizes the importance of understanding market needs, regulatory landscapes, and the value proposition of nanomaterials over traditional materials. The study also highlights the role of strategic partnerships, intellectual property management, and customer education in overcoming market entry barriers. Through a comprehensive analysis of case studies and industry practices, this review provides a framework for companies and researchers to effectively transition from lab-scale innovations to commercially viable sensor products. The findings suggest that a well-rounded marketing strategy, combined with robust product development and stakeholder engagement, is crucial for capitalizing on the unique benefits of nanomaterials in sensor applications.
Collapse
Affiliation(s)
- Anoop Singh
- Department of PhysicsGovt. Women Degree College GandhinagarHigher Education DepartmentJammuJammu & Kashmir180004India
| | - Eliyash Ahmed
- Department of Physics (H&S)Guru Nanak Institutions Technical CampusHyderabad501506India
| | - Mehrajud Din Rather
- Department of PhysicsUniversity Institute of Engineering and TechnologyGuru Nanak UniversityIbrahimpatnamTelangana501506India
| | - Atchaya Sundararajan
- Department of PhysicsSchool of Electrical and Electronics Engineering (SEEE) SASTRA Deemed UniversityThanjavur613401India
| | - Alka Sharma
- The Business SchoolUniversity of JammuJammuJammu and Kashmir180006India
| | | | - Ashok K. Sundramoorthy
- Centre for Nano‐BiosensorsDepartment of ProsthodonticsSaveetha Institute of Medical and Technical SciencesSaveetha Dental College and HospitalsPoonamallee High Road, VelappanchavadiChennaiTamil Nadu600077India
| | - Saurav Dixit
- Centre of Research Impact and OutcomeChitkara UniversityRajpuraPunjab140417India
- Peter the Great St Petersburg Polytechnic UniversityRussian FederationSt. Petersburg195251Russia
- Division of Research & InnovationUttaranchal UniversityDehradunUttarakhand248007India
| | - Nikolai Ivanovich Vatin
- Peter the Great St Petersburg Polytechnic UniversityRussian FederationSt. Petersburg195251Russia
- Division of Research and DevelopmentLovely Professional UniversityPhagwaraPunjab144001India
- Chitkara Centre for Research and DevelopmentChitkara UniversityHimachal Pradesh174103India
| | - Sandeep Arya
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| |
Collapse
|
2
|
Wei L, Cui Y, Zhang L. Insight into structures and electronic states of connected (n/n−1, 0) carbon nanotubes: Implications from a SCC-DFTB algorithm. JOURNAL OF MATERIALS SCIENCE 2024; 59:21333-21347. [DOI: 10.1007/s10853-024-10451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/11/2024] [Indexed: 01/05/2025]
|
3
|
Tamborelli A, Vaschetti V, Viada B, Mujica ML, Bollo S, Venegas-Yazigi D, Hermosilla-Ibáñez P, Rivas G, Dalmasso P. Multi-walled carbon nanotubes functionalized with a new Schiff base containing phenylboronic acid residues: application to the development of a bienzymatic glucose biosensor using a response surface methodology approach. Mikrochim Acta 2024; 191:558. [PMID: 39177820 DOI: 10.1007/s00604-024-06608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
An innovative supramolecular architecture is reported for bienzymatic glucose biosensing based on the use of a nanohybrid made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with a Schiff base modified with two phenylboronic acid residues (SB-dBA) as platform for the site-specific immobilization of the glycoproteins glucose oxidase (GOx) and horseradish peroxidase (HRP). The analytical signal was obtained from amperometric experiments at - 0.050 V in the presence of 5.0 × 10-4 M hydroquinone as redox mediator. The concentration of GOx and HRP and the interaction time between the enzymes and the nanohybrid MWCNT-SB-dBA deposited at glassy carbon electrodes (GCEs) were optimized through a central composite design (CCD)/response surface methodology (RSM). The optimal concentrations of GOx and HRP were 3.0 mg mL-1 and 1.50 mg mL-1, respectively, while the optimum interaction time was 3.0 min. The bienzymatic biosensor presented a sensitivity of (24 ± 2) × 102 µA dL mg-1 ((44 ± 4) × 102 µA M-1), a linear range between 0.06 mg dL-1 and 21.6 mg dL-1 (3.1 µM-1.2 mM) (R2 = 0.9991), and detection and quantification limits of 0.02 mg dL-1 (1.0 µM) and 0.06 mg dL-1 (3.1 µM), respectively. The reproducibility for five sensors prepared with the same MWCNT-SB-dBA nanohybrid was 6.3%, while the reproducibility for sensors prepared with five different nanohybrids and five electrodes each was 7.9%. The GCE/MWCNT-SB-dBA/GOx-HRP was successfully used for the quantification of glucose in artificial human urine and commercial human serum samples.
Collapse
Affiliation(s)
- Alejandro Tamborelli
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016, Córdoba, Argentina
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, INFIQC, CONICET-UNC, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Virginia Vaschetti
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016, Córdoba, Argentina.
| | - Benjamín Viada
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Michael López Mujica
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, INFIQC, CONICET-UNC, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Diego Venegas-Yazigi
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170022, Santiago, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Universidad de Santiago de Chile, 9170022, Santiago, Chile
| | - Patricio Hermosilla-Ibáñez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170022, Santiago, Chile.
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Universidad de Santiago de Chile, 9170022, Santiago, Chile.
| | - Gustavo Rivas
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, INFIQC, CONICET-UNC, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| | - Pablo Dalmasso
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, 5016, Córdoba, Argentina.
| |
Collapse
|
4
|
Mujica ML, Tamborelli A, Vaschetti VM, Espinoza LC, Bollo S, Dalmasso PR, Rivas GA. Two birds with one stone: integrating exfoliation and immunoaffinity properties in multi-walled carbon nanotubes by non-covalent functionalization with human immunoglobulin G. Mikrochim Acta 2023; 190:73. [PMID: 36695940 DOI: 10.1007/s00604-022-05630-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
An innovative strategy is proposed to simultaneously exfoliate multi-walled carbon nanotubes (MWCNTs) and generate MWCNTs with immunoaffinity properties. This strategy was based on the non-covalent functionalization of MWCNTs with human immunoglobulin G (IgG) by sonicating 2.5 mg mL-1 MWCNTs in 2.0 mg mL-1 IgG for 15 min with sonicator bath. Impedimetric experiments performed at glassy carbon electrodes (GCE) modified with the resulting MWCNT-IgG nanohybrid in the presence of anti-human immunoglobulin G antibody (Anti-IgG) demonstrated that the immunoglobulin retains their biorecognition properties even after the treatment during the MWCNT functionalization. We proposed, as proof-of-concept, two model electrochemical sensors, a voltammetric one for uric acid quantification by taking advantages of the exfoliated MWCNTs electroactivity (linear range, 5.0 × 10-7 M - 5.0 × 10-6 M; detection limit, 165 nM) and an impedimetric immunosensor for the detection of Anti-IgG through the use of the bioaffinity properties of the IgG present in the nanohybrid (linear range, 5-50 µg mL-1; detection limit, 2 µg mL-1).
Collapse
Affiliation(s)
- Michael López Mujica
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Alejandro Tamborelli
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.,CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Virginia M Vaschetti
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - L Carolina Espinoza
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Santiago, Chile. Sergio Livingstone 1007, Independencia, Santiago, Chile.,Departamento de Química Farmacológica Y Toxicológica, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Santiago, Chile. Sergio Livingstone 1007, Independencia, Santiago, Chile.,Departamento de Química Farmacológica Y Toxicológica, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Pablo R Dalmasso
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina.
| | - Gustavo A Rivas
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
5
|
Abstract
This study describes a world of new carbon “fullerene” allotropes that may be synthesized by molten carbonate electrolysis using greenhouse CO2 as the reactant. Beyond the world of conventional diamond, graphite and buckyballs, a vast array of unique nanocarbon structures exist. Until recently, CO2 was thought to be unreactive. Here, we show that CO2 can be transformed into distinct nano-bamboo, nano-pearl, nano-dragon, solid and hollow nano-onion, nano-tree, nano-rod, nano-belt and nano-flower morphologies of carbon. The capability to produce these allotropes at high purity by a straightforward electrolysis, analogous to aluminum production splitting of aluminum oxide, but instead nanocarbon production by splitting CO2, opens an array of inexpensive unique materials with exciting new high strength, electrical and thermal conductivity, flexibility, charge storage, lubricant and robustness properties. Commercial production technology of nanocarbons had been chemical vapor deposition, which is ten-fold more expensive, generally requires metallo-organics reactants and has a highly carbon-positive rather than carbon-negative footprint. Different nanocarbon structures were prepared electrochemically by variation of anode and cathode composition and architecture, electrolyte composition, pre-electrolysis processing and current ramping and current density. Individual allotrope structures and initial growth mechanisms are explored by SEM, TEM, HAADF EDX, XRD and Raman spectroscopy.
Collapse
|
6
|
Jang JW. Direct curvature measurement of the compartments in bamboo-shaped multi-walled carbon nanotubes via scanning probe microscopy. Sci Rep 2021; 11:701. [PMID: 33436727 PMCID: PMC7804926 DOI: 10.1038/s41598-020-79692-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 11/15/2022] Open
Abstract
Bamboo-shaped multi-walled carbon nanotubes (BS-MWCNTs) have compartmented structures inherently obtained during their catalytic growth, and the curvature of the compartmented structure is known to be determined by the morphology of the metal catalysts. In this study, the inside curvature of the BS-MWCNTs was directly measured through scanning probe microscopy (SPM). The surface of the compartment structures of BS-MWCNTs has discontinuous graphene layers and different frictional force levels depending on the curvature direction. That of the inside curvature can be directly observed through tribological analysis by adding and subtracting the lateral force microscopy images obtained on opposite sides along the axial direction of the BS-MWCNT (diameter of 500 nm). This tells us the direction of the inside curvature of the BS-MWCNT, which was also confirmed by identifying the growth direction of the BS-MWCNTs via scanning electron microscopy. Our demonstration implies that SPM can give the same insight into the structural characterization of nanomaterials that is relatively inexpensive and more user-friendly than currently used methods.
Collapse
Affiliation(s)
- Jae-Won Jang
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
7
|
Kuzin YI, Gorbatchuk VV, Rogov AM, Stoikov II, Evtugyn GA. Electrochemical Properties of Multilayered Coatings Implementing Thiacalix[4]arenes with Oligolactic Fragments and DNA. ELECTROANAL 2020. [DOI: 10.1002/elan.201900499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu. I. Kuzin
- Analytical Chemistry Department of A.M. Butlerov' Chemistry InstituteKazan Federal University Kremlevskaya Street 18 Kazan 420008 Kazan Russian Federation
| | - V. V. Gorbatchuk
- Analytical Chemistry Department of A.M. Butlerov' Chemistry InstituteKazan Federal University Kremlevskaya Street 18 Kazan 420008 Kazan Russian Federation
| | - A. M. Rogov
- Interdisciplinary Centre of Analytical MicroscopyKazan Federal University Kazan
| | - I. I. Stoikov
- Analytical Chemistry Department of A.M. Butlerov' Chemistry InstituteKazan Federal University Kremlevskaya Street 18 Kazan 420008 Kazan Russian Federation
| | - G. A. Evtugyn
- Analytical Chemistry Department of A.M. Butlerov' Chemistry InstituteKazan Federal University Kremlevskaya Street 18 Kazan 420008 Kazan Russian Federation
| |
Collapse
|
8
|
Mohanraj J, Durgalakshmi D, Rakkesh RA, Balakumar S, Rajendran S, Karimi-Maleh H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J Colloid Interface Sci 2020; 566:463-472. [DOI: 10.1016/j.jcis.2020.01.089] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
|
9
|
Gutiérrez A, Gutierrez F, Eguílaz M, Parrado C, Rivas GA. Non-covalent Functionalization of Multi-wall Carbon Nanotubes with Polyarginine: Characterization and Analytical Applications for Uric Acid Quantification. ELECTROANAL 2018. [DOI: 10.1002/elan.201800034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alejandro Gutiérrez
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
- División de Estudios de Posgrado e Investigación; Instituto Tecnológico de Cd. Madero; J. Rosas y J. Urueta S/N Col. Los Mangos Cd. Madero, Tamaulipas C.P. 89440 México
| | - Fabiana Gutierrez
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
| | - Marcos Eguílaz
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
| | - Concepción Parrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas; Universidad Complutense de Madrid; Madrid Spain
| | - Gustavo A. Rivas
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
| |
Collapse
|
10
|
Zinchenko A, Sergeyev VG. DNA-based materials as chemical reactors for synthesis of metal nanoparticles. POLYMER SCIENCE SERIES C 2017. [DOI: 10.1134/s1811238217010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Controllable and Large-Scale Synthesis of Carbon Nanostructures: A Review on Bamboo-Like Nanotubes. Catalysts 2017. [DOI: 10.3390/catal7090256] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Gutiérrez A, Primo EN, Eguílaz M, Parrado C, Rubianes MD, Rivas GA. Quantification of neurotransmitters and metabolically related compounds at glassy carbon electrodes modified with bamboo-like carbon nanotubes dispersed in double stranded DNA. Microchem J 2017. [DOI: 10.1016/j.microc.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
|
14
|
Emerging Nanomaterials for Analytical Detection. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|