1
|
Zhang K, Zhang Z, Ma S, Cheng D, Fan M, Zhou X, Li F, Zhang N. Crumpled Graphene/Poly (azure I) Modified Electrode for Non-enzymatic Detection of Hydrogen Peroxide Secreted from Tumor Cells. ANAL SCI 2021; 37:1367-1372. [PMID: 33716262 DOI: 10.2116/analsci.21p003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hydrogen peroxide (H2O2), an important representatives of reactive oxygen species, its aberrant expression is related to many diseases, including cancers. Therefore, it is very significant to design a reliable method for the real-time detection of endogenous H2O2. Herein, we describe preparing a poly (azure I)/crumpled graphene (cGN) modified electrode by an electro-polymerization method. The results showed that this electrode presented obvious electrocatalytic effect on the reduction of H2O2. Amperometric method was employed to monitor H2O2, and the amperometric response exhibited a good linear relationship with its concentration in the range of 8.0 × 10-6 - 1.25 × 10-3 mol/L; the detection limit reached to 6.7 × 10-7 mol/L (S/N = 3). Furthermore, this modified also displayed good selectivity, long-term stability and a high anti-interference ability. Excitingly, the established method could be successfully used to detect H2O2 in human serum samples, and measured H2O2 secreted from living MCF-7 cells. It could have potential use in cancer diagnosis.
Collapse
Affiliation(s)
- Keying Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University.,State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
| | - Ziqiang Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University
| | - Shangshang Ma
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University
| | - Deshun Cheng
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University
| | - Mengdi Fan
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University
| | - Xinyu Zhou
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University
| | - Fajun Li
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University
| | - Na Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University
| |
Collapse
|
2
|
Sugiyama K, Watanabe K, Komatsu S, Yoshida K, Ono T, Fujimura T, Kashiwagi Y, Sato K. Electropolymerization of Azure A and pH Sensing Using Poly(azure A)-modified Electrodes. ANAL SCI 2021; 37:893-896. [PMID: 33132234 DOI: 10.2116/analsci.20p341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A modified electrode was developed by immobilizing poly(azure A) (pAA) onto the surface of a glassy carbon electrode via the electropolymerization of azure A (AA). The pAA immobilized on the electrode exhibited redox response during cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The redox reaction obeyed the Nernst equation because of the involvement of H+ ions. In addition, the peak potential was shifted according to the solution pH. The shifts of the oxidation peak potential could be more easily observed using DPV than when using CV, indicating that the developed electrode could be useful as a pH sensor. This pH measurement method can be successfully applied in the pH range of 1 to 10 and can be successfully repeated more than 50 times.
Collapse
Affiliation(s)
- Kyoko Sugiyama
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | - Kazuhiro Watanabe
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | - Sachiko Komatsu
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | | | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University
| | - Tsutomu Fujimura
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | | | - Katsuhiko Sato
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University.,Department of Creative Engineering, National Institute of Technology, Tsuruoka College
| |
Collapse
|
3
|
Dalkiran B, Brett CMA. Polyphenazine and polytriphenylmethane redox polymer/nanomaterial-based electrochemical sensors and biosensors: a review. Mikrochim Acta 2021; 188:178. [PMID: 33913010 DOI: 10.1007/s00604-021-04821-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/02/2021] [Indexed: 12/01/2022]
Abstract
In recent years, an increasing number of studies has demonstrated that redox polymers can be used in simple and effective electrochemical sensing platforms due to their fast electron transfer and electrocatalytic ability. To develop more sensitive and selective electrochemical (bio)sensors, the electrocatalytic properties of redox polymers and the electrical, mechanical, and catalytic properties of various nanomaterials are combined. This review aims to summarize and contribute to the development of (bio)sensors based on polyphenazine or polytriphenylmethane redox polymers combined with nanomaterials, including carbon-based nanomaterials, metal/metal oxide, and semiconductor nanoparticles. The synthesis, preparation, and modification of these nanocomposites is presented and the contribution of each material to the performance of (bio)sensor has been be examined. It is explained how the combined use of these redox polymers and nanomaterials as a sensing platform leads to improved analytical performance of the (bio)sensors. Finally, the analytical performance characteristics and practical applications of polyphenazine and polytriphenylmethane redox polymer/nanomaterial-based electrochemical (bio)sensors are compared and discussed.
Collapse
Affiliation(s)
- Berna Dalkiran
- Department of Chemistry, University of Coimbra, CEMMPRE, 3004-535, Coimbra, Portugal.,Department of Chemistry, Faculty of Science, Ankara University, 06100, Ankara, Turkey
| | - Christopher M A Brett
- Department of Chemistry, University of Coimbra, CEMMPRE, 3004-535, Coimbra, Portugal.
| |
Collapse
|
4
|
A novel nanostructured poly(thionine)-deep eutectic solvent/CuO nanoparticle film-modified disposable pencil graphite electrode for determination of acetaminophen in the presence of ascorbic acid. Anal Bioanal Chem 2021; 413:1149-1157. [PMID: 33410977 DOI: 10.1007/s00216-020-03078-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
A new electrochemical sensor based on thionine (TH), an electroactive polymer, and CuO nanoparticle (CuONP)-modified pencil graphite electrode (PGE) has been developed. Poly(thionine) (PTH) was formed on the CuO/PGE surface by electropolymerisation in ethaline deep eutectic solvent (DES) containing acetic acid dopant to form PTHEthaline/CuO/PGE. Cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry were utilized to evaluate the fabrication process, electrochemical properties, and performance parameters of the modified electrodes. The analytical performance of the PTHEthaline/CuO/PGE was evaluated with respect to linear range, limit of detection, repeatability, and reproducibility for the detection of acetaminophen (APAP) by electrooxidation in the presence of ascorbic acid (AA). Analytical parameters such as pH were optimized. The combined use of PTH and CuONP led to enhanced performance towards APAP due to the large electroactive surface area and synergistic catalytic effect, with a wide linear working range and low detection limit. The reliability of the proposed sensor for the detection of APAP was successfully tested in pharmaceutical samples containing APAP and AA, with very good recoveries. Graphical abstract.
Collapse
|
5
|
Annu, Raja AN. Recent development in chitosan-based electrochemical sensors and its sensing application. Int J Biol Macromol 2020; 164:4231-4244. [DOI: 10.1016/j.ijbiomac.2020.09.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
|
6
|
Kou Y, Lu J, Jiang X, Tian B, Xue Y, Wang M, Tan L. Electrochemical Determination of Vitamin B12 Based on Cu
2+
‐Involved Fenton‐like Reaction. ELECTROANAL 2019. [DOI: 10.1002/elan.201900019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanxia Kou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Jiajia Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Xiangmei Jiang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Bowen Tian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Yuanyuan Xue
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Meijuan Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Liang Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| |
Collapse
|
7
|
Green Preparation of Ag-Au Bimetallic Nanoparticles Supported on Graphene with Alginate for Non-Enzymatic Hydrogen Peroxide Detection. NANOMATERIALS 2018; 8:nano8070507. [PMID: 29986528 PMCID: PMC6071074 DOI: 10.3390/nano8070507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 11/22/2022]
Abstract
In this work, a facile, environmentally friendly method was demonstrated for the synthesis of Ag-Au bimetallic nanoparticles (Ag-AuNPs) supported on reduced graphene oxide (RGO) with alginate as reductant and stabilizer. The prepared Ag-AuNPs/RGO was characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results indicated that uniform, spherical Ag-AuNPs was evenly dispersed on graphene surface and the average particle size is about 15 nm. Further, a non-enzymatic sensor was subsequently constructed through the modified electrode with the synthesized Ag-AuNPs/RGO. The sensor showed excellent performance toward H2O2 with a sensitivity of 112.05 μA·cm−2·mM−1, a linear range of 0.1–10 mM, and a low detection limit of 0.57 μM (S/N = 3). Additionally, the sensor displayed high sensitivity, selectivity, and stability for the detection of H2O2. The results demonstrated that Ag-AuNPs/RGO has potential applications as sensing material for quantitative determination of H2O2.
Collapse
|
8
|
Zhou H, Ran G, Masson JF, Wang C, Zhao Y, Song Q. Rational Design of Magnetic Micronanoelectrodes for Recognition and Ultrasensitive Quantification of Cysteine Enantiomers. Anal Chem 2018; 90:3374-3381. [DOI: 10.1021/acs.analchem.7b05006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Haifeng Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Department of Chemistry, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7 Canada
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jean-Francois Masson
- Department of Chemistry, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7 Canada
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Baghayeri M, Veisi H, Farhadi S, Beitollahi H, Maleki B. Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1298-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
A Comparative Study of Poly(Azure A) Film-Modified Disposable Electrodes for Electrocatalytic Oxidation of H₂O₂: Effect of Doping Anion. Polymers (Basel) 2018; 10:polym10010048. [PMID: 30966084 PMCID: PMC6414827 DOI: 10.3390/polym10010048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/23/2017] [Accepted: 01/03/2018] [Indexed: 11/17/2022] Open
Abstract
In the present paper, poly(azure A) (PAA) films were electrosynthetized in the presence of different doping anions on disposable screen-printed carbon electrodes (SPCEs). The anions used included inorganic monoatomic (chloride and fluoride), inorganic polyatomic (nitrate and sulfate) and organic polyatomic (dodecyl sulfate, DS) species. The coated electrodes thus obtained were characterized by electrochemical techniques and SEM. They showed improved electrocatalytic activities towards hydrogen peroxide oxidation compared to that of a bare SPCE. In particular, the insertion of DS anions inside PAA films provided a special sensitivity to the electrocatalysis of H2O2, which endowed these electrodes with promising analytical features for H2O2 quantification. We obtained a wide linear response for H2O2 within a range of 5 µM to 3 mM and a limit of detection of 1.43 ± 0.10 µM (signal-to-noise ratio of 3). Furthermore, sensitivity was 72.4 ± 0.49 nA·µM−1∙cm−2 at a relatively low electrocatalytic oxidation overpotential of 0.5 V vs. Ag. The applicability of this boosted system was tested by the analysis of H2O2 in commercial samples of a hair lightener and an antiseptic and was corroborated by spectrophotometric methods.
Collapse
|
11
|
Liu B, Ma C, Li Y, Kou Y, Lu J, Jiang X, Tan L. Voltammetric determination of reduced glutathione using poly(thionine) as a mediator in the presence of Fenton-type reaction. Talanta 2017; 170:399-405. [DOI: 10.1016/j.talanta.2017.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/03/2017] [Accepted: 04/09/2017] [Indexed: 11/29/2022]
|
12
|
One-pot preparation of conductive composite containing boronic acid derivative for non-enzymatic glucose detection. J Colloid Interface Sci 2017; 498:1-8. [DOI: 10.1016/j.jcis.2017.03.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
|
13
|
Barathi P, Thirumalraj B, Chen SM, Subramania A. One-pot electrochemical preparation of copper species immobilized poly(o-aminophenol)/MWCNT composite with excellent electrocatalytic activity for use as an H2O2 sensor. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00259a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox activity of copper species immobilized poly(o-aminophenol)/multi-walled carbon nanotube for direct electrocatalysis towards detection of H2O2.
Collapse
Affiliation(s)
- Palani Barathi
- Electrochemical Energy Research Lab
- Centre for Nanoscience and Technology
- Pondicherry University
- Puducherry–605014
- India
| | - Balamurugan Thirumalraj
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - A. Subramania
- Electrochemical Energy Research Lab
- Centre for Nanoscience and Technology
- Pondicherry University
- Puducherry–605014
- India
| |
Collapse
|