1
|
The review of advances in interfacial electrochemistry in Estonia: electrochemical double layer and adsorption studies for the development of electrochemical devices. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe electrochemistry nowadays has many faces and challenges. Although the focus has shifted from fundamental electrochemistry to applied electrochemistry, one needs to acknowledge that it is impossible to develop and design novel green energy transition devices without a comprehensive understanding of the electrochemical processes at the electrode and electrolyte interface that define the performance mechanisms. The review gives an overview of the systematic research in the field of electrochemistry in Estonia which reflects on the excellent collaboration between fundamental and applied electrochemistry.
Collapse
|
2
|
Kruusma J, Käämbre T, Tõnisoo A, Kisand V, Lust K, Lust E. The electrochemical behaviour of butyltrimethylammonium bis(trifluoromethylsulfonyl)imide at negatively polarised aluminium electrode studied by in situ soft X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry techniques. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractThe in situ X-ray photoelectron spectroscopy data indicate that butyltrimethylammonium bis(trifluoromethylsulfonyl)imide (N4111(TFSI)) adsorbs strongly within the potential range −3.25 V < E < −2.25 V and specifically at E < −3.25 V (vs. Ag-QRE) at the Al electrode. Strong adsorption of the intermediates of N4111(TFSI) electrochemical decomposition was observed in electrochemical impedance spectroscopy and cyclic voltammetry measurements. At E < −4.25 V (vs. Ag-QRE), very intensive electrochemical reduction of N4111(TFSI) took place at the Al electrode giving gaseous products. In the potential range from − 2.25 to 0.00 V (vs. Ag-QRE), non-specific adsorption of N4111(TFSI) exists et al. surface.
Collapse
|
3
|
The Electrochemical Behaviour of Quaternary Amine-Based Room-Temperature Ionic Liquid N4111(TFSI). Catalysts 2021. [DOI: 10.3390/catal11111315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we used the in situ X-ray photoelectron spectroscopy (XPS), in situ mass spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy methods, for the first time, in a detailed exploration of the electrochemical behaviour of a quaternary amine cation-based room-temperature ionic liquid, butyl-trimethyl-ammonium bis(trifluoromethylsulfonyl)imide (N4111(TFSI)), at the negatively and positively polarised molybdenum carbide-derived micro-mesoporous carbon (mmp-C(Mo2C)) electrodes that can be used as high surface area supporting material for electrocatalysts. The shapes of the C 1s, N 1s, O 1s, F 1s and S 2p XPS spectra were stable for N4111(TFSI) within a very wide potential range. The XPS data indicated the non-specific adsorption character of the cations and anions in the potential range from −2.00 V to 0.00 V. Thus, this region can be used for the detailed analysis of catalytic reaction mechanisms. We observed strong adsorption from 0.00 V to 1.80 V, and at E > 1.80 V, very strong adsorption of the N4111(TFSI) at the mmp-C(Mo2C) took place. At more negative potentials than −2.00 V, the formation of a surface layer containing both N4111+ cations and TFSI− anions was established with the formation of various gaseous compounds. Collected data indicated the electrochemical instability of the N4111+ cation at E < −2.00 V.
Collapse
|
4
|
The electrochemical behaviour of protic quaternary amine based room-temperature ionic liquid N2210(OTf) at negatively and positively polarized micro-mesoporous carbon electrode investigated by in situ X-ray photoelectron spectroscopy, in situ mass-spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy methods. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Jia M, Broderick A, Newberg JT. The Influence of Water Vapor on the Electrochemical Shift of an Ionic Liquid Measured by Ambient Pressure X-ray Photoelectron Spectroscopy. Chemphyschem 2021; 22:633-640. [PMID: 33534914 DOI: 10.1002/cphc.202001041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Indexed: 11/09/2022]
Abstract
Ionic liquids (ILs) are considered to be one of the steppingstones to fabricate next generation electrochemical devices given their unique physical and chemical properties. The addition of water to ILs significantly impact electrochemical related properties including viscosity, density, conductivity, and electrochemical window. Herein we utilize ambient pressure X-ray photoelectron spectroscopy (APXPS) to examine the impact of water on values of the electrochemical shift (S), which is determined by measuring changes in binding energy shifts as a function of an external bias. APXPS spectra of C 1s, O 1s and N 1s regions are examined for the IL 1-butyl-3-methylimidazolium acetate, [C4 mim][OAc], at the IL/gas interface as a function of both water vapor pressure and external bias. Results reveal that in the absence of water vapor there is an IL ohmic drop between the working electrode and quasi reference electrode, giving rise to chemical specific S values of less than one. Upon introducing water vapor, S values approach one as a function of increasing water vapor pressure, indicating a decrease in the IL ohmic drop as the IL/water mixture becomes more conductive and the potential drop is driven by the electric double layer at the electrode/IL interface.
Collapse
Affiliation(s)
- Meng Jia
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Alicia Broderick
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.,Present Address: U.S. Department of Homeland Security, Science and Technology Directorate's Transportation Security Laboratory, Atlantic City, NJ, 08405, USA
| | - John T Newberg
- Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
6
|
Zhu J, Lu L, Shi L, Dai Z, Zhuang W, Weng Z. Electric double-layer of [emim][DCA] ionic liquid at heterogeneous interface of TiO2/C composite: From simulation to experiment. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Kruusma J, Tõnisoo A, Pärna R, Nõmmiste E, Lust E. in Situ X-ray Photoelectron Spectroscopic and Electrochemical Studies of the Bromide Anions Dissolved in 1-Ethyl-3-Methyl Imidazolium Tetrafluoroborate. NANOMATERIALS 2019; 9:nano9020304. [PMID: 30813376 PMCID: PMC6409973 DOI: 10.3390/nano9020304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 11/17/2022]
Abstract
Influence of electrode potential on the electrochemical behavior of a 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) solution containing 5 wt % 1-ethyl-3-methylimidazolium bromide (EMImBr) has been investigated using electrochemical and synchrotron-initiated high-resolution in situ X-ray photoelectron spectroscopy (XPS) methods. Observation of the Br 3d5/2 in situ XPS signal, collected in a 5 wt % EMImBr solution at an EMImBF4–vacuum interface, enabled the detection of the start of the electrooxidation process of the Br− anion to Br3− anion and thereafter to the Br2 at the micro-mesoporous carbon electrode, polarized continuously at the high fixed positive potentials. A new photoelectron peak, corresponding to B–O bond formation in the B 1s in situ XPS spectra at E ≤ −1.17 V, parallel to the start of the electroreduction of the residual water at the micro-mesoporous carbon electrode, was observed and is discussed. The electroreduction of the residual water caused a reduction in the absolute value of binding energy vs. potential plot slope twice to ca. dBE dE−1 = −0.5 eV V−1 at E ≤ −1.17 V for C 1s, N 1s, B 1s, F 1s, and Br 3d5/2 photoelectrons.
Collapse
Affiliation(s)
- Jaanus Kruusma
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia.
| | - Arvo Tõnisoo
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia.
| | - Rainer Pärna
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia.
| | - Ergo Nõmmiste
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia.
| | - Enn Lust
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia.
| |
Collapse
|
8
|
Härmas R, Palm R, Härmas M, Pohl M, Kurig H, Tallo I, Tee E, Vaas I, Väli R, Romann T, Oll O, Kanarbik R, Liivand K, Eskusson J, Kruusma J, Thomberg T, Jänes A, Miidla P, Lust E. Influence of porosity parameters and electrolyte chemical composition on the power densities of non-aqueous and ionic liquid based supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Maier F, Niedermaier I, Steinrück HP. Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface. J Chem Phys 2017; 146:170901. [DOI: 10.1063/1.4982355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. Maier
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen,
Germany
| | - I. Niedermaier
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen,
Germany
| | - H.-P. Steinrück
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen,
Germany
| |
Collapse
|
10
|
Aydogan Gokturk P, Salzner U, Nyulászi L, Ulgut B, Kocabas C, Suzer S. XPS-evidence for in-situ electrochemically-generated carbene formation. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Huang Y, Zhao Y, Gong Q, Weng M, Bai J, Liu X, Jiang Y, Wang J, Wang D, Shao Y, Zhao M, Zhuang D, Liang J. Experimental and Correlative Analyses of the Ageing Mechanism of Activated Carbon Based Supercapacitor. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Romann T, Anderson E, Pikma P, Tamme H, Möller P, Lust E. Reactions at graphene|tetracyanoborate ionic liquid interface – New safety mechanisms for supercapacitors and batteries. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2016.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|