1
|
Wang S, Liu X, Chen H, Kong J, Guo Y, Lü W, Wang Z, Liu Z, Lü Z, Wang Z. Gas-Phase-Induced Engineering for Fabrication of 3D Hierarchical Porous Nickel and Its Application toward High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26547-26556. [PMID: 38727094 DOI: 10.1021/acsami.4c02760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Commercial nickel foam (NF), which is composed of numerous interconnected ligaments and hundred-micron pores, is widely acknowledged as a current collector/electrode material for catalysis, sensing, and energy storage applications. However, the commonly used NF often does not work satisfactorily due to its smooth surface and hollow structure of the ligaments. Herein, a gas-phase-induced engineering, two-step gaseous oxidation-reduction (GOR) is presented to directly transform the thin-walled hollow ligament of NF into a three-dimensional (3D) nanoporous prism structure, resulting in the fabrication of a unique hierarchical porous nickel foam (HPNF). This 3D nanoporous architecture is achieved by utilizing the spontaneous reconstruction of nickel atoms during volume expansion and contraction in the GOR process. The process avoids the involution of acid-base corrosion and sacrificial components, which are facile, environmentally friendly, and suitable for large-scale fabrication. Furthermore, MnO2 is electrochemically deposited on the HPNF to form a supercapacitor electrode (HPNF/MnO2). Because of the fully open structure for ion transport, superhydrophilic properties, and the increased contact area between MnO2 and the current collector, the HPNF/MnO2 electrode exhibits a high specific capacitance of 997.5 F g-1 at 3 A g-1 and remarkable cycling stability with 99.6% capacitance retention after 20000 cycles in 0.1 M Na2SO4 electrolyte, outperforming most MnO2-based supercapacitor electrodes.
Collapse
Affiliation(s)
- Shuo Wang
- School of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Xutong Liu
- School of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Honglei Chen
- School of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Jin Kong
- School of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Yingshuang Guo
- School of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Weiming Lü
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Zhengjia Wang
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Zhiguo Liu
- School of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Zhe Lü
- School of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Zhihong Wang
- School of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| |
Collapse
|
2
|
Islam S, Mia MM, Shah SS, Naher S, Shaikh MN, Aziz MA, Ahammad AJS. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors. CHEM REC 2022; 22:e202200013. [PMID: 35313076 DOI: 10.1002/tcr.202200013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
The demand for energy storage devices with high energy and power densities has increased tremendously in this rapidly growing world. Conventional capacitors, fuel cells, and lithium-ion batteries have been used as energy storage devices for the long term. However, supercapacitors are one of the most promising energy storage devices because of their high specific capacitance, high power density, and longer cycle life. Recent research has focused on synthesizing transition-metal oxides/hydroxides, carbon materials, and conducting polymers as supercapacitor electrode materials. The performance of supercapacitors can be improved by altering electrolytes, electrode materials, current collectors, experimental temperatures, and film thickness. Thousands of papers on supercapacitors have already been published, reflecting the significance and elucidating how much demanding such energy storage devices for this fast-growing generation. This review aims to illustrate the electrode materials loaded on various conductive substrates by electrochemical deposition employed for supercapacitors to provide broad knowledge on synthetic pathways, which will pave the way for future research. We also discussed the basic parameters involved in supercapacitor studies and the advantages of the electrochemical deposition techniques through literature analysis. Finally, future trends and directions on exploring metals/metal composites toward designing and constructing viable, high-class, and even newly featured flexible energy storage materials, electrodes, and systems are presented.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Mithu Mia
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Shamsun Naher
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
3
|
Wang S, Wang Z, Yan R, Guo Y, Chen H, Lü W, Zhang Y, Liu Z, Lü Z. A facile bottom-up strategy based on combustion-reduction toward monolithic micron/nanoporous nickel: An efficient electrode material for hydrogen evolution reaction and supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Tian L, Zhai X, Wang X, Pang X, Li J, Li Z. Morphology and phase transformation of α-MnO2/MnOOH modulated by N-CDs for efficient electrocatalytic oxygen evolution reaction in alkaline medium. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135823] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Yang X, Cai C, Zou Y, Xiang C, Chu H, Yan E, Qiu S, Sun L, Xu F, Hu X. Co3O4-doped two-dimensional carbon nanosheet as an electrode material for high-performance asymmetric supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135611] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Peng H, Duan D, Tan X, Hu F, Ma J, Zhang K, Xu F, Li B, Sun L. A One‐Pot Method to Synthesize a Co‐Based Graphene‐Like Structure Doped Carbon Material for the Oxygen Reduction Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.201901463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongliang Peng
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Diancheng Duan
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Xiyou Tan
- Supervisory Office of the Joint Logistics Department of Guangzhou Military Region Guangzhou 510000 China
| | - Fang Hu
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Jiaojun Ma
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Kexiang Zhang
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Fen Xu
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Bin Li
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Lixian Sun
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| |
Collapse
|
7
|
Organic molecule electrode with high capacitive performance originating from efficient collaboration between caffeic acid and graphene & graphene nanomesh hydrogel. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Atchudan R, Edison TNJI, Perumal S, Thirukumaran P, Vinodh R, Lee YR. Green synthesis of nitrogen-doped carbon nanograss for supercapacitors. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Liu F, Yang X, Dang D, Tian X. Engineering of Hierarchical and Three‐Dimensional Architectures Constructed by Titanium Nitride Nanowire Assemblies for Efficient Electrocatalysis. ChemElectroChem 2019. [DOI: 10.1002/celc.201900252] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fangfang Liu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine UtilizationWeifang University of Science and Technology Shouguang, Weifang 262700 China
| | - Xu Yang
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 China
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Dai Dang
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 China
- Key Laboratory of Fuel Cell Technology of Guangdong Province Guangzhou 510640 China
| | - Xinlong Tian
- Key Laboratory of Fuel Cell Technology of Guangdong Province Guangzhou 510640 China
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan University Haikou 570228 China
| |
Collapse
|
10
|
Idris MB, Devaraj S. Tuning the chemical composition, textural and capacitance properties of mesoporous graphitic carbon nitride. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Panahi S, Es’haghi M. Preparation and electrochemical characterization of PANI/MnCo2O4 nanocomposite as supercapacitor electrode material. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, PANI/MnCo2O4 nanocomposite was prepared via in-situ chemical polymerization method. Materials synthesized were characterized by FTIR spectroscopy, X-ray diffraction, and scanning electron spectroscopy. In addition, surface characterization of samples such as specific surface area, pore volume, and pore size distribution was studied. Supercapacitor capability of materials was investigated in 1 mol L–1 Na2SO4 solution using cyclic voltammetry in different potential scan rates and electrochemical impedance spectroscopy (EIS). The specific capacitance of materials was calculated, and it was observed that the specific capacitance of PANI/MnCo2O4 nanocomposite was 185 F g−1, much larger than PANI. Moreover, the prepared nanocomposite exhibited better rate capability in scan rate of 100 mV s−1 with respect to PANI. The EIS experiments revealed that the nanocomposite has lower charge transfer resistance compared with pure PANI. Subsequently, it was shown that the nanocomposite cycling performance was superior to the PANI cycling performance.
Collapse
Affiliation(s)
- Saeid Panahi
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Moosa Es’haghi
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
12
|
Wang Z, Cao F, Chen K, Yan Y, Chen Y, Zhang Y, Zhu X, Wei B, Xiong Y, Lv Z. Cellular Structure Fabricated on Ni Wire by a Simple and Cost-Effective Direct-Flame Approach and Its Application in Fiber-Shaped Supercapacitors. CHEMSUSCHEM 2018; 11:985-993. [PMID: 29319239 DOI: 10.1002/cssc.201701886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Cellular metals with the large surface/volume ratios and excellent electrical conductivity are widely applicable and have thus been studied extensively. It is highly desirable to develop a facile and cost-effective process for fabrication of porous metallic structures, and yet more so for micro/nanoporous structures. A direct-flame strategy is developed for in situ fabrication of micron-scale cellular architecture on a Ni metal precursor. The flame provides the required heat and also serves as a fuel reformer, which provides a gas mixture of H2 , CO, and O2 for redox treatment of metallic Ni. The redox processes at elevated temperatures allow fast reconstruction of the metal, leading to a cellular structure on Ni wire. This process is simple and clean and avoids the use of sacrificial materials or templates. Furthermore, nanocrystalline MnO2 is coated on the microporous Ni wire (MPNW) to form a supercapacitor electrode. The MnO2 /MPNW electrode and the corresponding fiber-shaped supercapacitor exhibit high specific capacitance and excellent cycling stability. Moreover, this work provides a novel strategy for the fabrication of cellular metals and alloys for a variety of applications, including catalysis, energy storage and conversion, and chemical sensing.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China
| | - Fenhui Cao
- School of Mechatronic Engineering, Daqing Normal University, Daqing, Heilongjiang, 163712, PR China
| | - Kongfa Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yingming Yan
- Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China
| | - Yifu Chen
- Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China
| | - Yaohui Zhang
- Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China
| | - Xingbao Zhu
- Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China
| | - Bo Wei
- Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China
| | - Yueping Xiong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, PR China
| | - Zhe Lv
- Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China
| |
Collapse
|
13
|
Chen H, Qi XQ, Kuang M, Dong F, Zhang YX. Hierarchical copper/nickel-based manganese dioxide core-shell nanostructure for supercapacitor electrodes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|