Simultaneous voltammetric determination of epinephrine and acetaminophen using a highly sensitive CoAl-OOH/reduced graphene oxide sensor in pharmaceutical samples and biological fluids.
MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020;
119:111557. [PMID:
33321621 DOI:
10.1016/j.msec.2020.111557]
[Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
For this study, three novel types of sensors comprised of CoAl-layered double oxyhydroxide (CoAl-LDH), CoAl-LDH/reduced graphene oxide (rGO), and CoAl-OOH/rGO nanosheets were successfully fabricated on glassy carbon electrodes (GCEs) and employed for the electrochemical detection of epinephrine (EP) and acetaminophen (AC). Interestingly, we found that the CoAl-OOH/rGO/GCE was more suitable for the determination of EP and AC in contrast to the CoAl-LDH and CoAl-OOH/rGO sensors. Differential pulse voltammetry results revealed that the CoAl-OOH/rGO/GCE delivered excellent electrocatalytic activity. The sensitivities and detection limits for the simultaneous measurement of EP and AC were 12.2 μA μM-1 cm-2, 0.023 μM L-1, and 4.87 μA μM-1 cm-2, 0.058 μM L-1, respectively. Especially, the as-obtained CoAl-OOH/rGO/GCE was successfully utilized for the detection in pharmaceutical samples and biological fluids with satisfactory results. Owing to its outstanding electrocatalytic activity and superior sensitivity, the CoAl-OOH/rGO/GCE could be beneficial to construct a promising electrochemical sensor for the detection of EP and AC.
Collapse