1
|
Sharma B, Pérez-García L, Chaudhary GR, Kaur G. Innovative approaches to cationic and anionic (catanionic) amphiphiles self-assemblies: Synthesis, properties, and industrial applications. Adv Colloid Interface Sci 2025; 337:103380. [PMID: 39732047 DOI: 10.1016/j.cis.2024.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/30/2024]
Abstract
Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements. Catanionic self-assemblies possess high stability, adjustable surface charge, and low critical aggregation concentration. This comprehensive review article distinguishes between cationic/anionic non-equimolar and equimolar ratio mixing formation of high-salt catanionic self-assemblies known as catanionic mixture and salt-free counterparts, termed ion-pair amphiphiles, respectively. It explores diverse synthesis techniques, emphasizing the roles of solvents, salts, and pH conditions and covers both experimental and theoretical aspects of state-of-the-art catanionic self-assemblies. Additionally, the review investigates the development of multi-responsive catanionic self-assemblies using light, pH, temperature, and redox, responsive cationic/anionic amphiphiles. It provides an in-depth exploration of potential synergistic interactions and properties, underscoring their practical importance in a wide range of industrial applications. The review explores challenges like precipitation, stability and identifies knowledge gaps, creating opportunities in the dynamic catanionic self-assembly field. It aims to offer insights into the journey of catanionic self-assemblies, from inception to current status, appealing to a broad audience invested in their scientific and industrial potential.
Collapse
Affiliation(s)
- Bunty Sharma
- Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India; Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Avda. Joan XXIII 27-31, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia UB (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India; Sophisticated Analytical Instrumentation Facility (SAIF)/Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India.
| | - Gurpreet Kaur
- Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Yahya R, Shah A, Kokab T, Ullah N, Hakeem MK, Hayat M, Haleem A, Shah I. Electrochemical Sensor for Detection and Degradation Studies of Ethyl Violet Dye. ACS OMEGA 2022; 7:34154-34165. [PMID: 36188263 PMCID: PMC9520707 DOI: 10.1021/acsomega.2c03472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
In this work, a simple and sensitive electrochemical method was developed to determine ethyl violet (EV) dye in aqueous systems by using square wave anodic stripping voltammetry (SWASV) employing a glassy carbon electrode modified with acidic-functionalized carbon nanotubes (COOH-fCNTs). In square wave anodic stripping voltammetry, EV exhibited a well-defined oxidation peak at 0.86 V at the modified GCE. Impedance spectroscopy and cyclic voltammetry were used to examine the charge transduction and sensing capabilities of the modified electrode. The influence of pH, deposition potential, and accumulation time on the electro-oxidation of EV was optimized. Under the optimum experimental conditions, the limit of detection with a value of 0.36 nM demonstrates high sensitivity of COOH-fCNTs/GCE for EV. After detection, it was envisioned to devise a method for the efficient removal of EV from an aqueous system. In this regard a photocatalytic degradation method of EV using Ho/TiO2 nanoparticles was developed. The Ho/TiO2 nanoparticles synthesized by the sol-gel method were characterized by UV-vis, XRD, FTIR, SEM, and EDX. The photocatalytic degradation studies revealed that basic medium is more suitable for a higher degradation rate of EV than acidic and neutral media. The photodegradation kinetic parameters were evaluated using UV-vis spectroscopic and electrochemical methods. The results revealed that the degradation process of EV follows first-order kinetics.
Collapse
Affiliation(s)
- Rashida Yahya
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Afzal Shah
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Tayyaba Kokab
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Naimat Ullah
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | | | - Mazhar Hayat
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Abdul Haleem
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Iltaf Shah
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Hayat M, Shah A, Hakeem MK, Irfan M, Haleem A, Khan SB, Shah I. A designed miniature sensor for the trace level detection and degradation studies of the toxic dye Rhodamine B. RSC Adv 2022; 12:15658-15669. [PMID: 35685705 PMCID: PMC9126646 DOI: 10.1039/d2ra01722a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
The presence of organic pollutants in water and food samples is a risk for the environment. To avoid this hazard a variety of analytical tools are used for the detection of toxic organic contaminants. Herein we present a selective and sensitive electrochemical sensor based on amino group functionalized multi walled carbon nanotubes and carboxylic group functionalized multi walled carbon nanotubes (HOOC-fMWCNTs/NH2-fMWCNTs) as modifiers of the glassy carbon electrode for the detection of a toxic dye, Rhodamine B. The sensing ability of the designed sensor was examined by electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry. The synergistic effect of HOOC-fMWCNTs and NH2-fMWCNTs (layer by layer) led to enhanced electrocatalytic activity of the modified electrode surface for Rhodamine B detection. Under optimized conditions, the graph between concentration and peak current followed a linear trend in the concentration range of 0.1 nM to 0.05 μM. The limits of detection and quantification were found to be 57.4 pM and 191.3 pM respectively. The designed sensor was also used for probing the degradation of Rhodamine B. Sodium borohydride was found to degrade Rhodamine B in neutral media under ambient conditions. The kinetics of degradation followed first order kinetics. Rhodamine B degraded to the extent of more than 80% as revealed by electrochemical and spectrophotometric techniques. The developed method is promising for the treatment of dye contaminated wastewater. Moreover, it uses only a microliter volume of the sample for analysis.
Collapse
Affiliation(s)
- Mazhar Hayat
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Muhammad Irfan
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Abdul Haleem
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University Al Ain P.O. Box 15551 United Arab Emirates
| |
Collapse
|
4
|
A Novel Electrochemical Sensing Platform for the Sensitive Detection and Degradation Monitoring of Methylene Blue. Catalysts 2022. [DOI: 10.3390/catal12030306] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methylene blue is a toxic dye that is extensively used as a colorant in textile industries. Industrial effluent containing methylene blue, when drained into water bodies without proper treatment, poses a serious threat to aquatic and human lives. In order to protect the biocycle, various methods have been established to detect and remove hazardous dyes from aqueous systems. Electrochemical methods are preferred, owing to their characteristic features of simplicity, portability, potential selectivity, cost effectiveness, and rapid responsiveness. Based on these considerations, an electrochemical sensor consisting of amino-group-functionalized, multi-walled carbon nanotubes (NH2-fMWCNTs) immobilized on a glassy carbon electrode (GCE) was developed for the sensitive detection of methylene blue in aqueous solutions. The performance of the designed sensor was analyzed by electrochemical impedance spectroscopy, cyclic voltammetry, and square wave voltammetry. The developed sensing tool demonstrated promising features of sensitivity, selectivity, stability, fast responsiveness, and the ability to work with a very small volume of the analyte, i.e., in microliters, for analysis. Amino groups rich in electrons provide a negative charge to multi-walled carbon nanotubes, which significantly enhances the electrocatalytic activity of NH2-fMWCNTs for cationic dyes such as methylene blue. Using the designed sensing platform, a linear calibration plot with a limit of detection of 0.21 nM was obtained for methylene blue under optimized conditions. The designed sensor was also employed to monitor the extent and kinetics of the degradation of methylene blue. Titania nanoparticles were used for photocatalytic degradation, and the kinetics of degradation was monitored by both UV-Visible spectroscopic and electrochemical methods. The results revealed more than 95% removal of methylene blue in a time span of just 30 min.
Collapse
|
5
|
Trimetallic Ag@Pt-Rh core-shell nanocubes modified anode for voltammetric sensing of dopamine and sulfanilamide. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
A novel mitochondria-targeted fluorescent probe based on carbon dots for Cu2+ imaging in living cells and zebrafish. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Surfactants-based remediation as an effective approach for removal of environmental pollutants—A review. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113960] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Ali SM, Eskandrani AA. The Sorption Performance of Cetyl Trimethyl Ammonium Bromide-Capped La 0.9Sr 0.1FeO 3 Perovskite for Organic Pollutants from Industrial Processes. Molecules 2020; 25:molecules25071640. [PMID: 32252436 PMCID: PMC7180810 DOI: 10.3390/molecules25071640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 11/22/2022] Open
Abstract
La0.9Sr0.1FeO3 perovskite, prepared by the microwave-assisted method, was capped with cetyl trimethyl ammonium bromide (CTAB) cationic surfactant, and applied as a sorbent for the removal of the anionic Congo red (CR) dye from aqueous solutions. X-ray diffraction (XRD) patterns showed that the perovskite structure was not affected by capping; however, the particle size increased. There was a hipsochromic shift in the value of λmax of the CR absorption spectrum in the presence of CTAB, which indicated the formation of an oppositely charged dye–surfactant complex. The adsorption efficiency of CTAB-capped La0.9Sr0.1FeO3 was independent of the pH of the solution—equilibrium was reached after a few minutes. The value of the maximum adsorption capacity, qm, was 151.52 mg·g−1, which was 10-times higher than that of the pure perovskite. The proposed sorbent maintained its excellent sorption ability in the presence of the sample matrix; therefore, it can be regenerated and reused with unchanged performance.
Collapse
Affiliation(s)
- Shimaa M. Ali
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemistry Department, Faculty of Science, Taibah University, Medinah 30002, Saudi Arabia;
- Correspondence: ; Tel.: +966-556793098
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medinah 30002, Saudi Arabia;
| |
Collapse
|
10
|
Shah A. A Novel Electrochemical Nanosensor for the Simultaneous Sensing of Two Toxic Food Dyes. ACS OMEGA 2020; 5:6187-6193. [PMID: 32226903 PMCID: PMC7098044 DOI: 10.1021/acsomega.0c00354] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
This work reports for the first time the preparation and performance of a nanosensor for the simultaneous detection of metanil yellow and fast green, which are toxic food dyes. For the development of this sensitive platform, the surface of a glassy carbon electrode (GCE) was modified with calixarene and gold nanoparticles. The sensing ability of the designed nanosensor (calix8/Au NPs/GCE) was tested by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. The influence of a number of parameters was investigated for optimizing the conditions to achieve the best response of the target analytes. Due to the synergistic activity of calix[8]arene and Au nanoparticles, the calix8/Au NPs/GCE nanocomposite was found to significantly enhance the signals of the selected food dyes in comparison to bare GCE. Under optimized conditions, limits of detection for metanil yellow and fast green were found to be 9.8 and 19.7 nM, respectively, at the calix8/Au NPs/GCE. The designed sensing platform also demonstrated figures of merit when applied for the sensing of food dyes in real water and juice samples. Moreover, high percent recovery, reproducibility, and stability suggested applicability of the designed electrochemical platform for real sample analysis.
Collapse
Affiliation(s)
- Afzal Shah
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department
of Chemistry, College of Science, University
of Bahrain, Sakhir, P.O Box 32038, The Kingdom of Bahrain
| |
Collapse
|
11
|
Ali N, Bilal M, Khan A, Ali F, Iqbal HMN. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135391. [PMID: 31806317 DOI: 10.1016/j.scitotenv.2019.135391] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023]
Abstract
Contaminated environments posed serious threats to the ecosystems and their living beings. Suitable preventive approaches should be adopted for effective remediation of contaminated environments to remove or lower their health and environmentally-related hazardous aspects. Petroleum or traces of petroleum contamination from oil fields and refineries to exposed soil in the form of gasoline, petrol, diesel, and used motor oil are a rich source of potential damage to the environment. Conventional ways of treatment and management of hydrocarbon are complicated, insufficient, and expensive. Herein, we reviewed a smart approach for the removal of petroleum source contamination from exposed soil using environment-friendly chemical surfactants and nanoscale surfactant system. The host/guest complexes formation of surfactants with the hydrocarbons (hydrophobic contaminants) of soil and water by the encapsulation mechanism of hydrophobes into the (micelles) a self-assembly aggregation of surfactants. Recently, surfactants stabilized by nanoparticles (NPs) acquired more importance and popularity over surfactant alone. The persistence of diverse hydrocarbon-based contaminants and the mechanisms of removal using pristine surfactants or NP-stabilized surfactant foams are discussed with suitable examples. In summary, herein, an effort has been made to present the notable potentialities of pristine surfactants and NP-stabilized surfactant foams to remediate the petroleum hydrocarbon contaminated soil for a greener and sustainable ecosystem.
Collapse
Affiliation(s)
- Nisar Ali
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL CP 64849, Mexico.
| |
Collapse
|
12
|
Han J, Fu R, Jin C, Li Z, Wang M, Yu P, Xie Y. Highly sensitive detection of trace Hg2+ via PdNPs/g-C3N4 nanosheet-modified electrodes using DPV. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Kokab T, Shah A, Iftikhar FJ, Nisar J, Akhter MS, Khan SB. Amino Acid-Fabricated Glassy Carbon Electrode for Efficient Simultaneous Sensing of Zinc(II), Cadmium(II), Copper(II), and Mercury(II) Ions. ACS OMEGA 2019; 4:22057-22068. [PMID: 31891086 PMCID: PMC6933785 DOI: 10.1021/acsomega.9b03189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/22/2019] [Indexed: 06/01/2023]
Abstract
Herein, we present a greener approach to achieve an ultrasensitive, selective, and viable sensor engineered by amino acids as a recognition layer for simultaneous electrochemical sensing of toxic heavy metals (HMs). Electrochemical techniques like electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and square-wave anodic stripping voltammetry (SWASV) were applied to demonstrate sensing capabilities of the designed analytical tool. The comparative results of different amino acids demonstrate alanine's superior performance with a well-resolved and enhanced current signal for target metal ions due to strong complexation of its functional moieties. The working conditions for alanine-modified GCE were optimized by investigating the effect of alanine concentration, different supporting electrolytes, pH values, accumulation potentials, and time. The limits of detection for Zn2+, Cd2+, Cu2+, and Hg2+ were found to be 8.92, 5.77, 3.01, and 5.89 pM, respectively. The alanine-modified electrode revealed absolute discrimination ability, stability, and ultrasensitivity toward metal ions even in the presence of multifold interfering species. Likewise, greener modifier-designed electrodes possessed remarkable electrocatalytic activity, cost affordability, reproducibility, and applicability for picomolar level detection of HM ions in real water sample matrixes. Theoretical calculations for the HM-amino acid interaction also support a significantly improved mediator role of the alanine modifier that is consistent with the experimental findings.
Collapse
Affiliation(s)
- Tayyaba Kokab
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Afzal Shah
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department
of Chemistry, College of Science, University
of Bahrain, Sakhir 32038, Bahrain
| | - Faiza Jan Iftikhar
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- NUTECH
School of Applied Sciences and Humanities, National University of Technology, Islamabad 44000, Pakistan
| | - Jan Nisar
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Mohammad Salim Akhter
- Department
of Chemistry, College of Science, University
of Bahrain, Sakhir 32038, Bahrain
| | - Sher Bahadur Khan
- Department
of Chemistry, King Abdul Aziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Zahid A, Bakirhan NK, Karadurmuş L, Shah A, Ozkan SA. Development of a Surfactant/Platinum Composite for Sensitive Cardio‐selective Beta Blocker Detection and their Theoretical Studies. ELECTROANAL 2019. [DOI: 10.1002/elan.201900156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anum Zahid
- Ankara UniversityFaculty of Pharmacy, Department of Analytical Chemistry Ankara Turkey
- Department of ChemistryQuaid-i-Azam University Islamabad 45320 Pakistan
| | - Nurgul K. Bakirhan
- Hitit UniversityFaculty of Art & Science, Department of Chemistry Corum Turkey
| | - Leyla Karadurmuş
- Ankara UniversityFaculty of Pharmacy, Department of Analytical Chemistry Ankara Turkey
- Department of Analytical Chemistry, Faculty of PharmacyAdıyaman University Adıyaman Turkey
| | - Afzal Shah
- Department of Chemistry, College of ScienceUniversity of Bahrain, Sakhir 32038 Bahrain
- Department of ChemistryQuaid-i-Azam University Islamabad 45320 Pakistan
| | - Sibel A. Ozkan
- Ankara UniversityFaculty of Pharmacy, Department of Analytical Chemistry Ankara Turkey
| |
Collapse
|
15
|
Banerjee S, Han X, Thoi VS. Modulating the Electrode–Electrolyte Interface with Cationic Surfactants in Carbon Dioxide Reduction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00449] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soumyodip Banerjee
- Department of Chemistry, Johns Hopkin University, Baltimore, Maryland 21217, United States
| | - Xu Han
- Department of Chemistry, Johns Hopkin University, Baltimore, Maryland 21217, United States
| | - V. Sara Thoi
- Department of Chemistry, Johns Hopkin University, Baltimore, Maryland 21217, United States
| |
Collapse
|
16
|
Pourreza N, Ghomi M. Green synthesized carbon quantum dots from Prosopis juliflora leaves as a dual off-on fluorescence probe for sensing mercury (II) and chemet drug. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:887-896. [DOI: 10.1016/j.msec.2018.12.141] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 12/15/2022]
|
17
|
Shaban SM, Aiad I, Moustafa AH, Aljoboury OH. Some alginates polymeric cationic surfactants; surface study and their evaluation as biocide and corrosion inhibitors. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Wen GL, Zhao W, Chen X, Liu JQ, Wang Y, Zhang Y, Huang ZJ, Wu YC. N-doped reduced graphene oxide /MnO2 nanocomposite for electrochemical detection of Hg2+ by square wave stripping voltammetry. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.121] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Zhang Q, Zhao Q, Fu M, Fan X, Lu H, Wang H, Zhang Y, Wang H. Carbon quantum dots encapsulated in super small platinum nanocrystals core-shell architecture/nitrogen doped graphene hybrid nanocomposite for electrochemical biosensing of DNA damage biomarker-8-hydroxy-2'-deoxyguanosine. Anal Chim Acta 2018; 1047:9-20. [PMID: 30567668 DOI: 10.1016/j.aca.2018.09.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 01/17/2023]
Abstract
In this work, carbon quantum dots (CQD) encapsulated in super small platinum nanocrystals core-shell architecture/nitrogen doped graphene hybrid nanocomposite (CQD@PDA@PtNCs-NGR) was design synthesized. Without using any capping reagent, stabilizer and surfactant, very small CQD was served as template and anchoring point for the synthesis of Pt NCs with a super small size (2.25 nm) and a uniform distribution. Meanwhile, dopamine (DA) was used as bridging agent, positioning agent and weak reducing agent to make Pt2+ grow on the CQD. Combine the high dispersed Pt NCs with high specific surface area and high conductivity of NGR, the CQD@PDA@PtNCs-NGR shows excellent electrocatalytic performance towards the biosensing of DNA damage biomarker- 8-Hydroxy-2'-deoxyguanosine (8-OH-dG). A very low detection limit of 0.45 nM and 0.85 nM (S/N = 3), a wide linear range of 0.013 μM-109.78 μM and a high sensitivity of 7.912 μA μM-1cm-2 and 4.190 μA μM-1cm-2 were obtained. The fabricated CQD@PDA@PtNCs-NGR realized the detection of 8-OH-dG in human urine practical sample. Furthermore, CQD@PDA@PtNCs-NGR was applied for the determination of 8-OH-dG generated from damaged DNA and damaged guanine (G), respectively. This work effectively combines the electrochemical signal of 8-OH-dG with DNA damage, confirms the mechanism of DNA damage, which might pave a new way to establish the associations between degree of DNA damage and 8-OH-dG.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Qiuyue Zhao
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Mingxuan Fu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Xinyu Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Haijun Lu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Haiyang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Yufan Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China
| | - Huan Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, PR China.
| |
Collapse
|
20
|
Carbamazepine coated silver nanoparticles for the simultaneous electrochemical sensing of specific food toxins. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Dai X, Wu S, Li S. Progress on electrochemical sensors for the determination of heavy metal ions from contaminated water. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/22243682.2018.1425904] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiangzi Dai
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Shuping Wu
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Songjun Li
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
22
|
Feng Y, Shao X, Huang K, Tian J, Mei X, Luo Y, Xu W. Mercury nanoladders: a new method for DNA amplification, signal identification and their application in the detection of Hg(ii) ions. Chem Commun (Camb) 2018; 54:8036-8039. [DOI: 10.1039/c8cc03851a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A biosensor based on Hg(ii) nanoladders integrated with graphene oxide (GO) for Hg(ii) detection was developed.
Collapse
Affiliation(s)
- Yuxiang Feng
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
| | - Xiangli Shao
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Jingjing Tian
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
| | - Xiaohong Mei
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
| | - Yunbo Luo
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Wentao Xu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety)
- Ministry of Agriculture
- Beijing
- China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| |
Collapse
|
23
|
Highly sensitive and selective electrochemical sensor for the trace level detection of mercury and cadmium. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Recent Studies on the Speciation and Determination of Mercury in Different Environmental Matrices Using Various Analytical Techniques. Int J Anal Chem 2017; 2017:3624015. [PMID: 29348750 PMCID: PMC5733771 DOI: 10.1155/2017/3624015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/26/2017] [Indexed: 11/25/2022] Open
Abstract
This paper reviews the current research on the speciation and determination of mercury by various analytical techniques, including the atomic absorption spectrometry (AAS), voltammetry, inductively coupled plasma optical emission spectrometry (ICP-OES), ICP-mass spectrometry (MS), atomic fluorescence spectrometry (AFS), spectrophotometry, spectrofluorometry, and high performance liquid chromatography (HPLC). Approximately 96 research papers on the speciation and determination of mercury by various analytical instruments published in international journals since 2015 were reviewed. All analytical parameters, including the limits of detection, linearity range, quality assurance and control, applicability, and interfering ions, evaluated in the reviewed articles were tabulated. In this review, we found a lack of information in speciation studies of mercury in recent years. Another important conclusion from this review was that there were few studies regarding the concentration of mercury in the atmosphere.
Collapse
|
25
|
Suherman AL, Tanner EE, Compton RG. Recent developments in inorganic Hg 2+ detection by voltammetry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Square voltammetric sensing of mercury at very low working potential by using oligomer-functionalized Ag@Au core-shell nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2372-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Suherman AL, Ngamchuea K, Tanner EEL, Sokolov SV, Holter J, Young NP, Compton RG. Electrochemical Detection of Ultratrace (Picomolar) Levels of Hg2+ Using a Silver Nanoparticle-Modified Glassy Carbon Electrode. Anal Chem 2017; 89:7166-7173. [DOI: 10.1021/acs.analchem.7b01304] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alex L. Suherman
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Kamonwad Ngamchuea
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Eden E. L. Tanner
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Stanislav V. Sokolov
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Jennifer Holter
- Department
of Materials, University of Oxford, Parks Road, OxfordOX1 3PH, United Kingdom
| | - Neil P. Young
- Department
of Materials, University of Oxford, Parks Road, OxfordOX1 3PH, United Kingdom
| | - Richard G. Compton
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
28
|
Zahid A, Shah A, Iftikhar FJ, Shah AH, Qureshi R. Surfactant modified glassy carbon electrode as an efficient sensing platform for the detection of Cd (ӏӏ) and Hg (ӏӏ). Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Zhu P, Tian W, Cheng N, Huang K, Luo Y, Xu W. Ultra-sensitive “turn-on” detection method for Hg2+ based on mispairing biosensor and emulsion PCR. Talanta 2016; 155:168-74. [DOI: 10.1016/j.talanta.2016.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 01/16/2023]
|
30
|
Shah A, Shahzad S, Munir A, Nadagouda MN, Khan GS, Shams DF, Dionysiou DD, Rana UA. Micelles as Soil and Water Decontamination Agents. Chem Rev 2016; 116:6042-74. [PMID: 27136750 DOI: 10.1021/acs.chemrev.6b00132] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment.
Collapse
Affiliation(s)
- Afzal Shah
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Suniya Shahzad
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Azeema Munir
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University , Dayton, Ohio 45324, United States
| | - Gul Shahzada Khan
- Department of Chemistry, Shaheed Benazir Bhutto University , Sheringal, Dir (Upper), 18000 Khyber Pakhtunkhwa, Pakistan
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University Mardan , 23200 Khyber Pakhtunkhwa, Pakistan
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati , Cincinnati, Ohio 45221-0012, United States
| | - Usman Ali Rana
- Sustainable Energy Technologies Center, College of Engineering, King Saud University , PO Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|