1
|
Jiang M, Liao L, Zhang J, Wei X, Yu CY, Wei H. Peptide core spherical nucleic acids circumvent tumor immunosuppression via supplementing methionine for enhanced photodynamic/gene immune/therapy of hepatocellular carcinoma. J Colloid Interface Sci 2025; 682:653-670. [PMID: 39642551 DOI: 10.1016/j.jcis.2024.11.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Spherical nucleic acids (SNAs) with functional peptide cores are an emerging nanoplatform for synergistic cancer therapy but have been rarely reported. We construct herein the first SNA nanoplatform based on a biodegradable binary peptide backbone of methionine (Met) and cysteine (Cys) for codelivery of a photosensitizer, Chlorin e6 (Ce6) and human liver-specific miR122 for synergistic photodynamic-gene therapy of hepatic cell carcinoma (HCC). Met supplementation by the peptide core improves the infiltration of T cells and enhances the effector function of T cells for turning a "cold" tumor into a "hot" one. The resulting SNA(+) shows the most significant inhibitory effect in a Hepa1-6 HCC primary/distal tumor model, with tumor growth inhibition (TGI) values of 98.5 ± 0.5 % and 99.1 ± 0.4 % for the primary and distant tumors, respectively. This SNA nanoplatform achieves superior high TGI values reported thus far to our knowledge with almost complete eradication for both tumors due to the simultaneous adaptive and innate immunity activation via photodynamic therapy (PDT) induced immunogenic cell death (ICD) and Met supplementation-promoted adaptive immunity, and miR122-enhanced innate immunity. Overall, this study not only develops a reliable synthetic strategy toward peptide-backboned multifunctional SNA nanoplatform, but also reports the modulation of amino acid metabolism for enhanced innate immunity for highly efficient HCC immunotherapy.
Collapse
Affiliation(s)
- Mingchao Jiang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Luanfeng Liao
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Jinyan Zhang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Xiaojie Wei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China; Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - Hua Wei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Liu S, Yu CY, Wei H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater Today Bio 2023; 22:100750. [PMID: 37545568 PMCID: PMC10400933 DOI: 10.1016/j.mtbio.2023.100750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Precise diagnosis and treatment of tumors currently still face considerable challenges due to the development of highly degreed heterogeneity in the dynamic evolution of tumors. With the rapid development of genomics, personalized diagnosis and treatment using specific genes may be a robust strategy to break through the bottleneck of traditional tumor treatment. Nevertheless, efficient in vivo gene delivery has been frequently hampered by the inherent defects of vectors and various biological barriers. Encouragingly, spherical nucleic acids (SNAs) with good modularity and programmability are excellent candidates capable of addressing traditional gene transfer-associated issues, which enables SNAs a precision nanoplatform with great potential for diverse biomedical applications. In this regard, there have been detailed reviews of SNA in drug delivery, gene regulation, and dermatology treatment. Still, to the best of our knowledge, there is no published systematic review summarizing the use of SNAs in oncology precision medicine and immunotherapy, which are considered new guidelines for oncology treatment. To this end, we summarized the notable advances in SNAs-based precision therapy and immunotherapy for tumors following a classification standard of different types of precise spatiotemporal control on active species by SNAs. Specifically, we focus on the structural diversity and programmability of SNAs. Finally, the challenges and possible solutions were discussed in the concluding remarks. This review will promote the rational design and development of SNAs for tumor-precise medicine and immunotherapy.
Collapse
Affiliation(s)
- Songbin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
3
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
4
|
Liu L, Deng D, Wu D, Hou W, Wang L, Li N, Sun Z. Duplex-specific nuclease-based electrochemical biosensor for the detection of microRNAs by conversion of homogeneous assay into surface-tethered electrochemical analysis. Anal Chim Acta 2021; 1149:338199. [DOI: 10.1016/j.aca.2021.338199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023]
|
5
|
Sfragano PS, Pillozzi S, Palchetti I. Electrochemical and PEC platforms for miRNA and other epigenetic markers of cancer diseases: Recent updates. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106929] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
6
|
Yang Y, Yang D, Shao Y, Li Y, Chen X, Xu Y, Miao J. A label-free electrochemical assay for coronavirus IBV H120 strain quantification based on equivalent substitution effect and AuNPs-assisted signal amplification. Mikrochim Acta 2020; 187:624. [PMID: 33094371 PMCID: PMC7581468 DOI: 10.1007/s00604-020-04582-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
A label-free electrochemical strategy is proposed combining equivalent substitution effect with AuNPs-assisted signal amplification. According to the differences of S1 protein in various infectious bronchitis virus (IBV) strains, a target DNA sequence that can specifically recognize H120 RNA forming a DNA-RNA hybridized double-strand structure has been designed. Then, the residual single-stranded target DNA is hydrolyzed by S1 nuclease. Therefore, the content of target DNA becomes equal to the content of virus RNA. After equivalent coronavirus, the target DNA is separated from DNA-RNA hybridized double strand by heating, which can partly hybridize with probe 2 modified on the electrode surface and probe 1 on AuNPs’ surface. Thus, AuNPs are pulled to the surface of the electrode and the abundant DNA on AuNPs’ surface could adsorb a large amount of hexaammineruthenium (III) chloride (RuHex) molecules, which produce a remarkably amplified electrochemical response. The voltammetric signal of RuHex with a peak near − 0.28 V vs. Ag/AgCl is used as the signal output. The proposed method shows a detection range of 1.56e−9 to 1.56e−6 μM with the detection limit of 2.96e−10 μM for IBV H120 strain selective quantification detection, exhibiting good accuracy, stability, and simplicity, which shows a great potential for IBV detection in vaccine research and avian infectious bronchitis diagnosis. Graphical abstract ![]()
Collapse
Affiliation(s)
- Yazhi Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dawei Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yingge Shao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xifeng Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Mobed A, Hasanzadeh M. Biosensing: The best alternative for conventional methods in detection of Alzheimer's disease biomarkers. Int J Biol Macromol 2020; 161:59-71. [PMID: 32504710 DOI: 10.1016/j.ijbiomac.2020.05.257] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/29/2022]
Abstract
Conceivably the imperative reason for the absence of appropriate treatment for Alzheimer's disease (AD) is the late onset of clinical symptoms followed by late treatment. Specific biomarkers play a vital role in this area. The amyloid-beta peptide, tau protein and micRNA, are the most important biomarker associated in AD. There are many routine methods for identifying these biomarkers which molecular based methods with a high accuracy and sensitivity have been considered. These methods have some limitations such as; false positive and negative results, problem on the interpretation, complexity and time-consuming, high cost instruments and etc. To overcome these limitations, bioassays were developed extensively. There exist a multitude of possible applications for Alzheimer's disease biomarkers by using biosensors. This review mainly focuses on major biomarkers in Alzheimer's disease, routine and old methods in identifying biomarkers of AD and their advantages and limitation, and biosensors to the identification of amyloid beta, tau protein and micRNAs biomarkers. Furthermore, evaluation the strengths and weaknesses of the developed bioassays and introduce leading challenges are considered in this review.
Collapse
Affiliation(s)
- Ahmad Mobed
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Recent Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Wu Y, Cui S, Li Q, Zhang R, Song Z, Gao Y, Chen W, Xing D. Recent advances in duplex-specific nuclease-based signal amplification strategies for microRNA detection. Biosens Bioelectron 2020; 165:112449. [DOI: 10.1016/j.bios.2020.112449] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
9
|
Mujica ML, Gallay PA, Perrachione F, Montemerlo AE, Tamborelli LA, Vaschetti VM, Reartes DF, Bollo S, Rodríguez MC, Dalmasso PR, Rubianes MD, Rivas GA. New trends in the development of electrochemical biosensors for the quantification of microRNAs. J Pharm Biomed Anal 2020; 189:113478. [PMID: 32768875 DOI: 10.1016/j.jpba.2020.113478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in RNA silencing and post-transcriptional gene expression regulation. Since their dysregulation has been associated with Alzheimer disease, cardiovascular diseases and different types of cancer, among others, miRNAs can be used as biomarkers for early diagnosis and prognosis of these diseases. The methods commonly used to quantify miRNAs are, in general, complex, costly, with limited application for point-of-care devices or resource-limited facilities. Electrochemical biosensors, mainly those based on nanomaterials, have emerged as a promising alternative to the conventional miRNA detection methods and have paved the way to the development of sensitive, fast, and low-cost detection systems. This review is focused on the most relevant contributions performed in the field of electrochemical miRNAs biosensors between 2017 and the beginning of 2020. The main contribution of this article is the critical discussion of the different amplification strategies and the comparative analysis between amplified and non-amplified miRNA electrochemical biosensing and between the different amplification schemes. Particular emphasis was given to the importance of the nanostructures, enzymes, labelling molecules, and special sequences of nucleic acids or analogues on the organization of the different bioanalytical platforms, the transduction of the hybridization event and the generation the analytical signal.
Collapse
Affiliation(s)
- Michael López Mujica
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Pablo A Gallay
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Fabrizio Perrachione
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Antonella E Montemerlo
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Luis A Tamborelli
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina; CIQA-CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Virginia M Vaschetti
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina; CIQA-CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Daiana F Reartes
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Soledad Bollo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Santiago, Chile
| | - Marcela C Rodríguez
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Pablo R Dalmasso
- CIQA-CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - María D Rubianes
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Gustavo A Rivas
- INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
10
|
Wang M, Chen W, Tang L, Yan R, Miao P. Duplex-specific nuclease assisted miRNA assay based on gold and silver nanoparticles co-decorated on electrode interface. Anal Chim Acta 2020; 1107:23-29. [DOI: 10.1016/j.aca.2020.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/19/2022]
|
11
|
Zhang S, Li KB, Shi W, Zhang J, Han DM, Xu JJ. Resettable and enzyme-free molecular logic devices for the intelligent amplification detection of multiple miRNAs via catalyzed hairpin assembly. NANOSCALE 2019; 11:5048-5057. [PMID: 30839977 DOI: 10.1039/c8nr10103e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The integration of multi-level DNA logic gates for biological diagnosis is far from being fully realized. In particular, the simplification of logical analysis to implement advanced logic diagnoses is still a critical challenge for DNA computing and bioelectronics. Here, we developed a magnetic bead/DNA system to construct a library of logic gates, enabling the sensing of multiplex target miRNAs. In this assay, the miRNA-catalyzed hairpin assembly (CHA) was successfully applied to construct two/three-input concatenated logic circuits with excellent specificity extended to design a highly sensitive multiplex detection system. Significantly, the CHA-based multiplex detection system can distinguish individual target miRNAs (such as miR-21, miR-155, and miR let-7a) under a logic function control, which presents great applications in the development of rapid and intelligent detection. Another novel feature is that the multiplex detection system can be reset by heating the output system and the magnetic separation of the computing modules. Overall, the proposed logic diagnostics with high amplification efficiency is simple, fast, low-cost, and resettable, and holds great promise in the development of biocomputing, multiparameter sensing, and intelligent disease diagnostics.
Collapse
Affiliation(s)
- Siqi Zhang
- Department of Chemistry, Taizhou University, Jiaojiang, 318000, China.
| | | | | | | | | | | |
Collapse
|
12
|
Coutinho C, Somoza Á. MicroRNA sensors based on gold nanoparticles. Anal Bioanal Chem 2018; 411:1807-1824. [PMID: 30390112 DOI: 10.1007/s00216-018-1450-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs, the dysregulation of which has been associated with the progression of several human diseases, including cancer. Interestingly, these molecules can be used as biomarkers for early disease diagnosis and can be found in a variety of body fluids and tissue samples. However, their specific properties and very low concentrations make their detection rather challenging. In this regard, current detection methods are complex, cost-ineffective, and of limited application in point-of-care settings or resource-limited facilities. Recently, nanotechnology-based approaches have emerged as promising alternatives to conventional miRNA detection methods and paved the way for research towards sensitive, fast, and low-cost detection systems. In particular, due to their exceptional properties, the use of gold nanoparticles (AuNPs) has significantly improved the performance of miRNA biosensors. This review discusses the application of AuNPs in different miRNA sensor modalities, commenting on recently reported examples. A practical overview of each modality is provided, highlighting their future use in clinical diagnosis. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Catarina Coutinho
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain.
| |
Collapse
|
13
|
Toehold-mediated strand displacement reaction triggered by nicked DNAzymes substrate for amplified electrochemical detection of lead ion. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
An ultrasensitive and switch-on platform for aflatoxin B1 detection in peanut based on the fluorescence quenching of graphene oxide-gold nanocomposites. Talanta 2018; 181:346-351. [DOI: 10.1016/j.talanta.2018.01.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/29/2017] [Accepted: 01/15/2018] [Indexed: 01/24/2023]
|
15
|
Yang Y, Wang Y, Zhu M, Chen Y, Xiao Y, Shen Y, Xie A. RGO/AuNR/HA-5FU nanocomposite with multi-stage release behavior and efficient antitumor activity for synergistic therapy. Biomater Sci 2018; 5:990-1000. [PMID: 28300268 DOI: 10.1039/c7bm00007c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A reduced graphene oxide (RGO)/gold nanorod (AuNR)/hydroxyapatite (HA) nanocomposite was designed and successfully synthesized for the first time. An anticancer drug, 5-fluorouracil (5FU), was chosen as a model drug to be loaded in RGO/AuNR/HA. The fabricated RGO/AuNR/HA-5FU showed robust, selective targeting and penetrating efficiency against HeLa cells due to the good compatibility and nontoxicity of HA, and showed excellent synergetic antitumor effects through combined chemotherapy (CT) by 5FU and photothermal therapy (PTT) by both RGO and AuNRs under near-infrared (NIR) laser irradiation. More importantly, this synergistic dual therapy based on RGO/AuNR/HA can also minimize side effects in normal cells and exhibits greater antitumor activity because of a multi-stage drug release ability triggered by the pH sensitivity of HA in the first stage and the combined photothermal conversion capabilities of RGO and AuNRs by means of the NIR laser irradiation in the second stage. This study suggests that the novel RGO/AuNR/HA multi-stage drug delivery system may represent a promising potential application of multifunctional composite materials in the biomedical field.
Collapse
Affiliation(s)
- Ying Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | | | | | | | | | | | | |
Collapse
|
16
|
Bo B, Zhang T, Jiang Y, Cui H, Miao P. Triple Signal Amplification Strategy for Ultrasensitive Determination of miRNA Based on Duplex Specific Nuclease and Bridge DNA–Gold Nanoparticles. Anal Chem 2018; 90:2395-2400. [PMID: 29308636 DOI: 10.1021/acs.analchem.7b05447] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bing Bo
- Shanghai
Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 P. R. China
| | - Tian Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163 P. R. China
| | - Yiting Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163 P. R. China
| | - Haiyan Cui
- Shanghai
Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 P. R. China
| | - Peng Miao
- Shanghai
Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 P. R. China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163 P. R. China
| |
Collapse
|
17
|
Kilic T, Erdem A, Ozsoz M, Carrara S. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosens Bioelectron 2018; 99:525-546. [DOI: 10.1016/j.bios.2017.08.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
|
18
|
Xu J, Han K, Liu D, Lin L, Miao P. Isothermal amplification detection of miRNA based on the catalysis of nucleases and voltammetric characteristics of silver nanoparticles. MOLECULAR BIOSYSTEMS 2017; 12:3550-3555. [PMID: 27785510 DOI: 10.1039/c6mb00659k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MiRNAs are a fascinating kind of biomolecule due to their vital functions in gene regulation and potential value as biomarkers for serious diseases including cancers. Exploiting convenient and sensitive methods for miRNA expression assays is imperative. In this study, we employ an exonuclease (RecJf) and a nicking endonuclease (Nt.BbvCI) to catalyse isothermal reactions for the amplified detection of miRNA. The degree of cyclical enzymatic amplification depends on the initial target miRNA level, which can determine the density of DNA probes bound on the electrode surface. Since DNA probes with an amino group at the 3' end are able to locate silver nanoparticles on the electrode, which provide intense stripping responses, the sensitive quantification of miRNA can be achieved. The proposed method has a limit of detection as low as 35 aM, with remarkable specificity, which offers a new approach for investigating miRNA networks and for clinical diagnosis applications.
Collapse
Affiliation(s)
- Jianhua Xu
- Department of Laboratory Science, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Kun Han
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.
| | - Dongdong Liu
- Department of Laboratory Science, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Li Lin
- Department of Laboratory Science, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.
| |
Collapse
|
19
|
Amperometric biosensor for microRNA based on the use of tetrahedral DNA nanostructure probes and guanine nanowire amplification. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2246-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Azimzadeh M, Nasirizadeh N, Rahaie M, Naderi-Manesh H. Early detection of Alzheimer's disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Adv 2017. [DOI: 10.1039/c7ra09767k] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Serum miR-137 is quantified for the early detection of Alzheimer's disease using a electrochemically reduced graphene oxide and gold nanowire modified electrode.
Collapse
Affiliation(s)
- Mostafa Azimzadeh
- Stem Cell Biology Research Center
- Yazd Reproductive Sciences Institute
- Shahid Sadoughi University of Medical Sciences
- Yazd
- Iran
| | - Navid Nasirizadeh
- Department of Textile and Polymer Engineering
- Yazd Branch
- Islamic Azad University
- Yazd
- Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering
- Faculty of New Sciences and Technologies
- University of Tehran
- Tehran
- Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology/Biophysics
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
21
|
Fiammengo R. Can nanotechnology improve cancer diagnosis through miRNA detection? Biomark Med 2017; 11:69-86. [DOI: 10.2217/bmm-2016-0195] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
miRNAs are key regulators of gene expression, and alterations in their expression levels correlate with the onset and progression of cancer. Although miRNAs have been proposed as biomarkers for cancer diagnosis, their application in routine clinical praxis is yet to come. Current quantification strategies have limitation, and there is a great interest in developing innovative ones. Since a few years, nanotechnology-based approaches for miRNA quantification are emerging at fast pace but there is urgent need to go beyond the proof-of-concept stage. Nanotechnology will have a strong impact on cancer diagnosis through miRNA detection only if it is demonstrated that the newly developed approaches are indeed working on ‘real-world’ samples under standardized conditions.
Collapse
Affiliation(s)
- Roberto Fiammengo
- Center for Biomolecular Nanotechnologies@UniLe – Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano, Lecce, Italy
| |
Collapse
|
22
|
Miao J, Wang J, Guo J, Gao H, Han K, Jiang C, Miao P. A plasmonic colorimetric strategy for visual miRNA detection based on hybridization chain reaction. Sci Rep 2016; 6:32219. [PMID: 27534372 PMCID: PMC4989231 DOI: 10.1038/srep32219] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023] Open
Abstract
In this work, a novel colorimetric strategy for miRNA analysis is proposed based on hybridization chain reaction (HCR)-mediated localized surface plasmon resonance (LSPR) variation of silver nanoparticles (AgNPs). miRNA in the sample to be tested is able to release HCR initiator from a solid interface to AgNPs colloid system by toehold exchange-mediated strand displacement, which then triggers the consumption of fuel strands with single-stranded tails for HCR. The final produced long nicked double-stranded DNA loses the ability to protect AgNPs from salt-induced aggregation. The stability variation of the colloid system can then be monitored by recording corresponding UV-vis spectrum and initial miRNA level is thus determined. This sensing system involves only four DNA strands which is quite simple. The practical utility is confirmed to be excellent by employing different biological samples.
Collapse
Affiliation(s)
- Jie Miao
- Department of Clinical Laboratory, the 404th Hospital of PLA, Weihai 264200, P. R. China
| | - Jingsheng Wang
- Department of Clinical Laboratory, the 404th Hospital of PLA, Weihai 264200, P. R. China
| | - Jinyang Guo
- Department of Clinical Laboratory, the 404th Hospital of PLA, Weihai 264200, P. R. China
| | - Huiguang Gao
- Department of Clinical Laboratory, the 404th Hospital of PLA, Weihai 264200, P. R. China
| | - Kun Han
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Chengmin Jiang
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| |
Collapse
|
23
|
Wang J, Zhang C, Liu L, Kalesh KA, Qiu L, Ding S, Fu M, Gao LQ, Jiang P. A capillary electrophoresis method to explore the self-assembly of a novel polypeptide ligand with quantum dots. Electrophoresis 2016; 37:2156-62. [DOI: 10.1002/elps.201600164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Jianhao Wang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Chencheng Zhang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Li Liu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Karunakaran A. Kalesh
- Department of Chemical Engineering, Imperial College London; South Kensington Campus; London UK
| | - Lin Qiu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
- State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing Jiangsu P. R. China
| | - Shumin Ding
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Minli Fu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Li-qian Gao
- Department of Chemistry; National University of Singapore; Singapore
| | - Pengju Jiang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
- Key Laboratory of Synthetic Biology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai P. R. China
| |
Collapse
|
24
|
Yu Y, Zhang Q, Chang CC, Liu Y, Yang Z, Guo Y, Wang Y, Galanakis DK, Levon K, Rafailovich M. Design of a molecular imprinting biosensor with multi-scale roughness for detection across a broad spectrum of biomolecules. Analyst 2016; 141:5607-17. [DOI: 10.1039/c6an01157h] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The molecular imprinting technique has tremendous applications in artificial enzymes, bioseparation, and sensor devices.
Collapse
Affiliation(s)
- Yingjie Yu
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Qi Zhang
- Department of Chemical and Biomolecular Engineering
- New York University Tandon School of Engineering
- Brooklyn
- USA
| | | | - Ying Liu
- ThINC Facility
- Advanced Energy Center
- Stony Brook
- USA
| | - Zhenhua Yang
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Yichen Guo
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Yantian Wang
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Dennis K. Galanakis
- Department of Medicine
- Stony Brook University School of Medicine
- Stony Brook
- USA
| | - Kalle Levon
- Department of Chemical and Biomolecular Engineering
- New York University Tandon School of Engineering
- Brooklyn
- USA
| | - Miriam Rafailovich
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| |
Collapse
|